Computational Geometry
[Aure91] Aurenhammer, Franz, “Voronoi Diagrams—A Survey of a Fundamental Geometric Data
Structure,” ACM Computing Surveys, 23(3), September 1991, 345–405.
[BKOS97] de Berg, Mark, van Kreveld, Marc, Overmars, Mark, and Schwarzkopf, Otfried, Computational
Geometry: Algorithms and Applications, Springer-Verlag, 1997.
[BeMR94] Bern, Marshall, Mitchell, Scott, and Ruppert, Jim, “Linear-Size Nonobtuse Triangulation of
Polygons,” in Proc. of the 10
th
Annual Symp. on Computational Geometry, Stony Brook, New
York, June 6–8, 1994, 221–230.
[BDST92] Boissonnat, J.-D., Devillers, O., Schott, R., Teillaud, M., and Yvinec, M., “Applications of
Random Sampling to On-line Algorithms in Computational Geometry,” Discrete Comp.
Geom., 8, 1992, 51–71.
[BoiT93] Boissonnat, J.-D., and Teillaud, M., “On the Randomized Construction of the Delaunay Tree,”
Theoret. Comp. Sci., 112, 1993, 339–354.
[Chaz91] Chazelle, B., “Triangulating a Simple Polygon in Linear Time,” Discrete Comput. Geom., 6,
1991, 485–524.
[CiMS98] Cignoni, P., Montani, C., and Scopigno, R., “DeWall: A Fast Divide and Conquer Delaunay
Triangulation Algorithm in E
d
,” CAD, 30(5), April 1998, 333–341.
[ClaS89] Clarkson, K.L., and Shor, P.W., “Applications of Random Sampling in Computational Geom-
etry,” Discrete Comp. Geometry, 4, 1989, 387–421.
[Devi98] Devillers, Olivier, “Improved Incremental Randomized Delaunay Triangulation,” in Proc. of
the 14
th
Annual Symp. on Computational Geometry, Minneapolis, Minnesota, June 7–10, 1998,
ACM Press, 106–115.
[Dwye87] Dwyer, Rex A., “A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangu-
lations,” Algorithmica, 2(2), 1987, 137–151.
[Edel87] Edelsbrunner, Herbert, Algorithms in Combinatorial Geometry, Springer-Verlag, New York,
1987.
[EtzR99] Etzion, Michal, and Rappoport, Ari, “Computing the Voronoi Diagram of a 3-D Polyhedron
by Separate Computation of its Symbolic and Geometric Parts,” in [BroA99], 167–178.
[FanP93] Fang, Tsung-Pao, and Piegl, Les A., “Delaunay Triangulation Using a Uniform Grid,” CG&A,
13(3), May 1993, 36–47.
[FanP95] Fang, Tsung-Pao, and Piegl, Les A., “Delaunay Triangulation in Three Dimensions,” CG&A,
15(5), September 1995, 62–69.
[Fort87] Fortune, Stephen J., “A Sweepline Algorithm for Voronoi Diagrams,” Algorithmica, 2(2), 1987,
153–174.
[GJPT78] Garey, M.R., Johnson, D.S., Preparata, F.P., and Tarjan, R.E., “Triangulating a Simple
Polygon,” Inform. Process. Lett., 7, 1978, 175–179.
[GreS77] Green, P.J., and Sibson, R., “Computing Dirichlet Tessellations in the Plane,” Computer
Journal, 21(2), 1977, 168–173.
[GuiS85] Guibas, Leonidas J., and Stolfi, Jorge, “Primitives for the Manipulation of General Subdivi-
sions and the Computation of Voronoi Diagrams,” ACM Trans. on Graphics, 4(2), April 1985,
74–123.
[LBDW92] Lavender, David, Bowyer, Adrian, Davenport, James, Wallis, Andrew, and Woodwark, John,
“Voronoi Diagrams of Set-Theoretic Solid Models,” CG&A, 12(5), September 1992, 69–77.
[LeeP77] Lee, D.T., and Preparata, F.P., “Location of a Point in a Planar Subdivision and its Applica-
tion,” SIAM J. Comp., 6. 1977, 594–606.
[LinM96] Lin, Ming C., and Manocha, Dinesh, editors, Applied Computational Geometry: Towards
Geometric Engineering, Springer Verlag, 1996.
[Lisc94] Lischinski, Dani, “Incremental Delaunay Triangulation,” in [Heck94], 47–59.
[Mulm94] Mulmuley, Ketan, Computational Geometry: An Introduction Through Randomized Algorithms,
Prentice-Hall, Inc., 1994.
[NarM95] Narkhede, Atul, and Manocha, Dinesh, “Fast Polygon Triangulation Based on Seidel’s
Algorithm,” in [Paet95], 394–397.
[Orou94] O’Rourke, Joseph, Computational Geometry in C, Cambridge Univ. Press, 1994.
[PreS85] Preparata, Franco P., and Shamos, Michael I., Computational Geometry: An Introduction,
Springer-Verlag, 1985.
[Shew96] Shewchuk, Jonathan Richard, “Triangle: Engineering a 2D Quality Mesh Generator and
Delaunay Triangulator,” in [LinM96], 203–222.
838 Bibliography