
10
20
30
34R
159
Micro/nano tribology
force microscope and the surface forces apparatus: the
issue of scale’, Tribol. Lett. 10: 217–23.
Mylvaganam, K. and Zhang, L. C. (2009), ‘Nanoscratching-
induced phase transformation of monocrystalline silicon
– the depth-of-cut effect’, Adv. Mat. Res. 76–78: 387–91.
Ruan, J. and Bhushan, B. (1994), ‘Atomic-scale and
microscale friction of graphite and diamond using friction
force microscopy’, J. Appl. Phys. 76: 5022–35.
Ruan, J. and Bhushan, B. (1994), ‘Atomic-scale friction
measurements using friction force microscopy: Part i
general principles and new measurement technique’,
ASME J Tribol. 116: 378–88.
Sundararajan, S. and Bhushan, B. (2000), ‘Topography
induced contributions to friction forces measured using an
atomic force/friction force microscope’, J. Appl. Phys. 88:
4825–31.
Tabor, D. and Winterton, R. H. S. (1969), ‘The direct
measurement of normal and retarded van der waals
forces’, Proc. R. Soc. Lond. A 312: 435–50.
Tanaka, H. and Zhang, L. C. (1996), in Progress of Cutting
and Grinding, ed N Narutaki, Osaka: Japan Society for
Precision Engineering, p. 262.
Wu, Y. Q., Huang, H., Zou, J. and Dell, J. M. (2009),
‘Nanoscratch-induced deformation of single crystal silicon’,
Journal of Vacuum Science & Technology B 27: 1374–7.
Zarudi, I., Cheong, W. C. D., Zou, J. and Zhang, L. C.
(2004), ‘Atomistic structure of monocrystalline silicon in
surface nano-modifi cation’, Nanotechnology 15: 104.
Zhang, L. C. and Tanaka, H. (1997), ‘Towards a deeper
understanding of wear and friction on the atomic scale-a
molecular dynamics analysis’, Wear 211: 44–53.
Zhang, L. C. and Tanaka, H. (1998), ‘Atomic scale
deformation in silicon monocrystals induced by two-body