
34 
n. 
Weak 
solutions 
and 
local 
energy 
estimates 
II 
l,pl 
{ID(u - k)±(1 + (u - k)±(P-1ID(I} dxdr 
Q+(9.p) 
~ 
~o 
fl 
ID(u 
- k)±(IPdxdr + 
"((P) 
If 
(u - k)'±ID(IPdxdr 
Q+(9.p) 
Q+(9.p) 
+ 
"( 
(p, 
\lu\lao.aT) 
II 
(?/Io 
+ 
?/Ilr;;~ 
X 
[(u 
- k)± > 
0] 
dxdr. 
Q+(9.p) 
Finally 
f f 
l,puIlD(u 
- k)±I(u - k)±(Pdxdr 
Q+(9.p) 
~ 
"( 
II 
l,pul 
{ID(u - k)±(I(u -
k)±(p-l 
+ 
(u 
-
k)~(P-IID(I} 
dxdr 
Q+(9.p) 
~ 
~o 
II 
ID(u-k)±(I
P
dxdr+"(p,6
0
) 
fl(u-k)'±ID(IPdxdr 
Q+(9.p)  Q+(9.p) 
+ 
"( 
(p, 
"u\lao.a
T
) 
If 
?/1ft 
X 
[(u 
- k)± > 
0] 
dxdr. 
Q+(9.p) 
Combining these estimates implies that the boundary integral on the right hand 
side 
of 
(4.9) can be estimated by 
~o 
fIID(U 
- k)±(IPdxdr + 
"((P, 
"u"ao.a
T
) 
ff 
(u - k)'±ID(IPdxdr 
Q+(9.p) 
Q+(9.p) 
+ "(p,6
0
) 
ff 
(1 
+?/Io 
+ 
?/Id~ 
X 
[(u 
- k)± > 
0] 
dxdr. 
Q+(9.p) 
We 
put this in (4.9) and, to conclude the proof, estimate the integral involving the 
functions 
!Pi, 
i=O, 
1,2, 
and 
?/Ii, 
i=O, I, 
as in the proof 
of 
Proposition 3.1. 
The proof 
of 
the logarithmic estimate (4.7) near the lateral boundary 
ST 
is 
similar to the proof 
of 
the interior logarithmic estimate (3.14), modulo the modi-
fications indicated above and we omit the details. 
4-(;;). Dirichlet boundary data 
Let u be a weak solution 
of 
the Dirichlet problem (2.1), which in addition satisfies 
(4.1). The assumption (D) on the boundary datum 9 is retained. 
Fix 
(xo,to) EST and consider the cylinder [(xo,t
o
) + Q(8,p)], where 8 is 
so small that 
to 
- 8 > 
O. 
Local energy estimates for u near (x
o
, 
to) 
are obtained by 
taking, in the weak formulation (2.5), the testing functions