
A Remark on Maximal Regularity of the Stokes Equations 273
[Ama00] , On the strong solvability of the Navier-Stokes equations,J.Math.
Fluid Mech. 2 (2000), no. 1, 16–98. MR MR1755865 (2002b:76028)
[AS03a] T. Abe and Y. Shibata, On a resolvent estimate of the Stokes equation on an
infinite layer, J. Math. Soc. Japan 55 (2003), no. 2, 469–497.
[AS03b]
, On a resolvent estimate of the Stokes equation on an infinite layer.
II. λ =0case, J. Math. Fluid Mech. 5 (2003), no. 3, 245–274.
[Abe10] H. Abels. Bounded Imaginary Powers and H
∞
-Calculus of the Stokes opera-
tor in unbounded domains. Progress in Nonlinear Differential Equations and
Their Applications, Vol. 64, 1–15.
[AW05] H. Abels and M. Wiegner, Resolvent estimates for the Stokes operator on an
infinite layer, Differential Integral Equations 18 (2005), no. 10, 1081–1110.
MR MR2162625 (2006e:35253)
[Bes67] O.V. Besov, Continuation of functions from L
p
l
and W
p
l
, Trudy Mat. Inst.
Steklov. 89 (1967), 5–17. MR MR0215077 (35 #5920)
[Bog86] M.E. Bogovski˘ı, Decomposition of L
p
(Ω; R
n
) into a direct sum of subspaces
of solenoidal and potential vector fields, Dokl. Akad. Nauk SSSR 286 (1986),
no. 4, 781–786. MR MR828621 (88c:46035)
[DHP01] W. Desch, M. Hieber, and J. Pr¨uss, L
p
-theory of the Stokes equation in a half
space,J.Evol.Equ.1 (2001), no. 1, 115–142. MR MR1838323 (2002c:35212)
[DHP03] R. Denk, M. Hieber, and J. Pr¨uss, R-boundedness, Fourier multipliers and
problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 166 (2003).
[FKS07] R. Farwig, H. Kozono, and H. Sohr, On the Helmholtz decomposition in gen-
eral unbounded domains,Arch.Math.(Basel)88 (2007), no. 3, 239–248. MR
MR2305602 (2008e:35147)
[FR08] R. Farwig and M.-H. Ri, Resolvent estimates and maximal regularity in
weighted L
q
-spaces of the Stokes operator in an infinite cylinder,J.Math.
Fluid Mech. 10 (2008), no. 3, 352–387. MR MR2430805 (2009m:35380)
[Fra00] M. Franzke, Strong solution of the Navier-Stokes equations in aperture do-
mains, Ann. Univ. Ferrara Sez. VII (N.S.) 46 (2000), 161–173, Navier-Stokes
equations and related nonlinear problems (Ferrara, 1999). MR MR1896928
(2003c:76030)
[Fr¨o07] A. Fr¨ohlich, The Stokes operator in weighted L
q
-spaces. II. Weighted resolvent
estimates and maximal L
p
-regularity, Math. Ann. 339 (2007), no. 2, 287–316.
MR MR2324721 (2008i:35188)
[FS94] R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system
in bounded and unbounded domains, J. Math. Soc. Japan 46 (1994), no. 4,
607–643.
[Gal94] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes
equations. Vol. I, Springer Tracts in Natural Philosophy, vol. 38, Springer-
Verlag, New York, 1994.
[GHHS09] M. Geißert, H. Heck, M. Hieber, and O. Sawada, Weak Neumann implies
stokes, to appear in J. Reine Angew. Math.
[Gig81] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L
r
spaces,Math.Z.178 (1981), no. 3, 297–329. MR MR635201 (83e:47028)