
176 CHAPTER 4 Introduction to Rotating Machines
nonuniformity of air-gap reluctance associated with variations in rotor position in
conjunction with time-varying currents applied to their stator windings. In such ma-
chines, both the stator and rotor structures are subjected to time-varying magnetic
flux and, as a result, both may require lamination to reduce eddy-current losses.
Rotating electric machines take many forms and are known by many names: dc,
synchronous, permanent-magnet, induction, variable reluctance, hysteresis, brush-
less, and so on. Although these machines appear to be quite dissimilar, the physical
principles governing their behavior are quite similar, and it is often helpful to think
of them in terms of the same physical picture. For example, analysis of a dc machine
shows that associated with both the rotor and the stator are magnetic flux distributions
which are fixed in space and that the torque-producing characteristic of the dc machine
stems from the tendency of these flux distributions to align. An induction machine, in
spite of many fundamental differences, works on exactly the same principle; one can
identify flux distributions associated with the rotor and stator. Although they are not
stationary but rather rotate in synchronism, just as in a dc motor they are displaced by
a constant angular separation, and torque is produced by the tendency of these flux
distribution to align.
Certainly, analytically based models are essential to the analysis and design of
electric machines, and such models will be derived thoughout this book. However,
it is also important to recognize that physical insight into the performance of these
devices is equally useful. One objective of this and subsequent chapters is to guide
the reader in the development of such insight.
4,2
INTRODUCTION TO AC AND DC
MACHINES
4.2.1 AC Machines
Traditional ac machines fall into one of two categories:
synchronous
and
induction.
In synchronous machines, rotor-winding currents are supplied directly from the sta-
tionary frame through a rotating contact. In induction machines, rotor currents are
induced in the rotor windings by a combination of the time-variation of the stator
currents and the motion of the rotor relative to the stator.
Synchronous Machines A preliminary picture of synchronous-machine perfor-
mance can be gained by discussing the voltage induced in the armature of the
very much simplified
salient-pole
ac synchronous generator shown schematically
in Fig. 4.4. The field-winding of this machine produces a single pair of magnetic
poles (similar to that of a bar magnet), and hence this machine is referred to as a
two-pole
machine.
With rare exceptions, the armature winding of a synchronous machine is on the
stator, and the field winding is on the rotor, as is true for the simplified machine
of Fig. 4.4. The field winding is excited by direct current conducted to it by means
of stationary carbon
brushes
which contact rotatating
slip rings
or
collector rings.
Practical factors usually dictate this orientation of the two windings: It is advantageous