
We use the Law of Sines to find side a of triangle ABC.
sin
3
24°
sin
a
43°
Multiply both sides by 3a: a sin 24°  3 sin 43°
Divide both sides by sin 24°: a 
3
s
s
in
in
2
4
4
3
°
°
 5.03
Now in the right triangle CBD, we have
sin 67° 
hy
o
p
p
o
p
t
o
e
s
n
i
u
te
se
h
a
5.
h
03
.
Therefore, h  5.03 sin 67°  4.63 miles. ■
614 CHAPTER 8 Triangle Trigonometry
EXERCISES 8.4
Directions: Standard notation for triangle ABC is used
throughout. Use a calculator and round off your answers to
one decimal place at the end of the computation.
In Exercises 1–8, solve triangle ABC under the given condi-
tions.
1. A  44°, B  22°, a  6
2. B  33°, C  46°, b  4
3. A  110°, C  40°, a  12
4. A  105°, B  27°, b  10
5. B  42°, C  52°, b  6
6. A  67°, C  28°, a  9
7. A  102.3°, B  36.2°, a  16
8. B  93.5°, C  48.5°, b  7
In Exercises 9–32, solve the triangle. The Law of Cosines may
be needed in Exercises 19–32.
9. b  12, c  20, B  70°
10. b  30, c  50, C  60°
11. a  15, b  12, B  20°
12. b  12.5, c  20.1, B  37.3°
13. a  5, c  12, A  102°
14. a  9, b  14, B  95°
15. b  12, c  10, C  56°
16. a  12.4, c  6.2, A  72°
17. A  41°, B  6.7°, a  5
18. a  30, b  40, A  30°
19. b  4, c  10, A  75°
20. a  50, c  80, C  45°
21. a  6, b  12, c  16
22. B  20.67°, C  34°, b  185
23. a  16.5, b  18.2, C  47°
24. a  21, c  15.8, B  71°
25. b  17.2, c  12.4, B  62.5°
26. b  24.1, c  10.5, C  26.3°
27. a  10.1, b  18.2, A  50.7°
28. b  14.6, c  7.8, B  40.4°
29. b  12.2, c  20, A  65°
30. a  44, c  84, C  42.2°
31. A  19°, B  35°, a  110
32. b  15.4, c  19.3, A  42°
33. A surveyor marks points A and B 200 meters apart on one
bank of a river. She sights a point C on the opposite bank
and determines the angles shown in the figure. What is the
distance from A to C?
34. A forest fire is spotted from two fire towers. The triangle de-
termined by the two towers and the fire has angles 
of 28° and 37° at the tower vertices. If the towers are 
3000 meters apart, which one is closer to the fire?
C
AB
57° 42°