
5.  Radiation Exchange Between Surfaces      591
Parallel surfaces:
For A
1
 – A
2
, X = 0.50, Y = 1.00, L = 0.25, and F
12
 = F
21
 = 0.509 
For A
3
 – A
4
, X = 0.25, Y = 1.00, L = 0.50, and F
34
 = F
43
 = 0.165 
For A
5
 – A
6
, X = 0.50, Y = 0.25, L = 1.00, and F
56
 = F
65
 = 0.036 
Perpendicular surfaces:
For surfaces A
1
 – A
3
, A
1
 – A
4
, A
2
 – A
3
, and A
2
 – A
4
:
X = 1.00, Y = 0.50, Z = 0.25 resulting in: 
F
13
 = F
23
 = F
14
 = F
24
 = 0.167 and F
31
 = F
32
 = F
41
 = F
42
 = (0.5/0.25) × 0.167 = 
0.334
For surfaces A
1
 – A
5
, A
1
 – A
6
, A
2
 – A
5
, and A
2
 – A
6
:
X = 0.50, Y = 1.00, Z = 0.25 resulting in: 
F
15
 = F
16
 = F
25
 = F
26
§ 0.079 and F
51
 =F
61
 = F
52
 = F
62
 = (1.0/0.25) × 0.079 = 0.315 
For surface A
3
 – A
5
, A
3
 – A
6
, A
4
 – A
5
, and A
4
 – A
6
:
X = 0.25, Y = 1.00, Z = 0.50 resulting in: 
F
35
 = F
36
 = F
45
 = F
46
 = 0.084 and F
53
 = F
63
 = F
54
 = F
64
 = (1.0/0.50) × 0.084 = 
0.167
The emissive powers are found from Equation IVd.2.1.  For example, E
b1
 = 
5.67E–8 × 500
4
 W/m
2
.  If we now substitute values in Equation IVd.5.9, we find: 
»
»
»
»
»
»
»
»
¼
º
«
«
«
«
«
«
«
«
¬
ª
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
00.101.005.005.009.009.0
01.000.107.007.013.013.0
02.002.000.103.007.007.0
02.002.003
.000.107.007.0
05.005.010.010.000.131.0
06.006.012.012.036.00.1
1
2
3
4
5
6
ªº
«»
«»
«»
«»
«»
«»
«»
«»
¬¼
 = 
»
»
»
»
»
»
»
»
¼
º
«
«
«
«
«
«
«
«
¬
ª
16.12558
78.6072
94.10890
72.4150
33.2939
12.1063
Upon solving this set, we find; J
1
 = 7536.7 W/m
2
, J
2
 = 8265.2 W/m
2
, J
3
 = 6032.9 
W/m
2
, J
4
 = 12,556.5 W/m
2
, J
5
 = 9522.8 W/m
2
, and J
6
 = 15,085.6 W/m
2
.  The cor-
responding rates of heat transfer for the surfaces are: 
1
Q
 = 
()
()( )
4
(5.67E 8) 500 7536.3
10.3/0.30.5
−× −
=−
−×
855.6 W.  Similarly, we find 
2
Q
 = –305.6 
W, 
3
Q
 = –844.5 W, 
4
Q
 = –1057.2 W, 
5
Q
 = 112.2 W, and 
6
Q
 = 832.6 W.   
Such problems involving radiation exchanges between isothermal surfaces can be 
easily solved with the software included on the accompanying CD-ROM.   
We use a similar method to solve problems in which instead of surface tem-
peratures, the surface heat flux is specified.  An adiabatic surface is a special case 
of the heat flux boundary conditions in which the heat flux is zero.  Thus, if sur-
face i is adiabatic, then E
bi
≡ J
i
, which is equivalent with 
ε
i
≈  0.