
quasi-shear mode (orthorhombic, YZ plane):
V
SV
¼ c
44
þ c
22
sin
2
y þ c
33
cos
2
y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc
44
þ c
22
sin
2
y þ c
33
cos
2
yÞ
2
4B
q
1=2
ð2Þ
1=2
pure shear mode (orthorhombic, YZ plane):
V
SH
¼
c
66
sin
2
y þ c
55
cos
2
y
1=2
where
B ¼ðc
22
sin
2
y þ c
44
cos
2
yÞðc
44
sin
2
y þ c
33
cos
2
yÞðc
23
þ c
44
Þ
2
sin
2
y cos
2
y
quasi-longitudinal mode (orthorhombic, XY plane):
V
P
¼ c
66
þ c
22
sin
2
’ þ c
11
cos
2
’ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc
66
þ c
22
sin
2
’ þ c
11
cos
2
’Þ
2
4C
q
1=2
ð2Þ
1=2
quasi-shear mode (orthorhombic, XY plane):
V
SH
¼ c
66
þ c
22
sin
2
’ þ c
11
cos
2
’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc
66
þ c
22
sin
2
’ þ c
11
cos
2
’Þ
2
4C
q
1=2
ð2Þ
1=2
pure shear mode (orthorhombic, XY plane):
V
SV
¼
c
55
cos
2
’ þ c
44
sin
2
’
1=2
where
C ¼ðc
66
sin
2
’ þ c
11
cos
2
’Þðc
22
sin
2
’ þ c
66
cos
2
’Þðc
12
þ c
66
Þ
2
sin
2
’ cos
2
’
and y and ’ are the angles of the wave vector relative to the x
3
and x
1
axes,
respectively.
Kelvin notation
In spite of its almost exclusive use in the geophysical literature, the abbreviated Voigt
notation has several mathematical disadvantages. For example, certain norms of the
fourth-rank stiffness tensor are not equal to the corresponding norms of the Voigt
stiffness matrix (Thomson, 1878; Helbig, 1994; Dellinger et al., 1998), and the
eigenvalues of the Voigt stiffness matrix are not the eigenvalues of the stress tensor.
The lesser-known Kelvin notation is very similar to the Voigt notation, except that
each element of the 6 6 matrix is weighted according to how many elements of the
actual stiffness tensor it represents. Kelvin matrix elements having indices 1, 2, or 3
each map to only a single index pair in the fourth-rank notation, 11, 22, and 33,
30 Elasticity and Hooke’s law