
viii 
CONTENTS 
2 
Numerical 
integration. 
Interest 
Rates. 
Bonds. 
45 
2.1  Double 
integrals. 
.  .  .  .  .  .  .  .  . 
45 
2.2 
Improper 
integrals 
.............. 
48 
2.3  Differentiating improper integrals  .  .  .  .  .  . 
51 
2.4  Midpoint, Trapezoidal, 
and 
Simpson's 
rules. 
52 
2.5  Convergence of Numerical 
Integration 
Methods 
56 
2.5.1  Implementation of numerical integration 
methods 
58 
2.5.2  A concrete 
example. 
. 
62 
2.6 
Interest 
Rate 
Curves  .  .  .  .  .  64 
2.6.1 
Constant 
interest 
rates 
66 
2.6.2  Forward 
Rates. 
.  .  .  . 
66 
2.6.3  Discretely compounded interest  67 
2.7  Bonds. Yield, Duration, Convexity  .  . 
69 
2.7.1  Zero 
Coupon 
Bonds. 
.  .  .  .  .  . 
72 
2.8  Numerical implementation of 
bond 
mathematics 
73 
2.9  References  77 
2.10  Exercises . 
78 
3 
Probability 
concepts. 
Black-Scholes 
formula. 
Greeks 
and 
Hedging. 
81 
3.1  Discrete probability 
concepts. 
.  .  .  .  .  .  .  . 
81 
3.2  Continuous probability 
concepts. 
.  .  .  .  .  . 
83 
3.2.1  Variance, covariance, 
and 
correlation 
85 
3.3 
The 
standard 
normal variable  89 
3.4  Normal 
random 
variables .  .  . 
91 
3.5 
The 
Black-Scholes 
formula. 
.  94 
3.6 
The 
Greeks of 
European 
options. 
97 
3.6.1  Explaining 
the 
magic 
of 
Greeks 
computations 
99 
3.6.2  Implied volatility  .  .  .  .  .  .  .  .  .  .  .  .  103 
3.7 
The 
concept of hedging. 
~-
and 
r-hedging 
.  105 
3.8  Implementation of 
the 
Black-Scholes 
formula. 
108 
3.9  References  110 
3.10 
Exercises. 
.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 
111 
4 
Lognormal 
variables. 
Risk-neutral 
pricing. 
117 
4.1  Change of probability density for functions of 
random 
variables 117 
4.2  Lognormal 
random 
variables  .  119 
4.3 
Independent 
random 
variables  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 
121 
IX 
4.4  Approximating sums of lognormal variables .  126 
4.5  Power series  .  .  .  .  .  .  .  .  .  .  .  .  .  128 
4.5.1  Stirling's formula  .  .  .  .  .  .  .  .  .  131 
4.6  A lognormal model for asset prices 
... 
132 
4.7 
Risk-neutral 
derivation 
of 
Black-Scholes  133 
4.8 
Probability 
that 
options expire in-the--money  135 
4.9 
Financial 
Interpretation 
of 
N(d
1
) 
and 
N(d
2
) 
137 
4.10  References  138 
4.11  Exercises .  .  .  139 
5 
Taylor's 
formula. 
Taylor 
series. 
143 
5.1  Taylor's Formula for functions 
of 
one variable  143 
5.2  Taylor's formula for multivariable 
functions. 
.  147 
5.2.1  Taylor's formula for functions 
of 
two variables  150 
5.3  Taylor series expansions 
.. 
.  .  .  .  .  .  .  .  .  152 
5.3.1  Examples 
of 
Taylor series expansions  .  155 
5.4  Greeks 
and 
Taylor's formula  .  .  .  .  .  .  .  .  .  .  158 
5.5  Black-Scholes formula:  ATM 
approximations. 
160 
5.5.1  Several ATM approximations formulas  160 
5.5.2  Deriving 
the 
ATM approximations formulas 
161 
5.5.3 
The 
precision of 
the 
ATM 
approximation 
of 
the 
Black-
Scholes formula  .  .  .  .  .  .  .  .  .  .  .  .  .  165 
5.6  Connections between 
duration 
and 
convexity  .  170 
5.7  References  172 
5.8 
Exercises.................. 
173 
6 
Finite 
Differences. 
Black-Scholes 
PDE. 
177 
6.1  Forward, backward, central finite differences  177 
6.2 
Finite 
difference solutions of 
ODEs 
.  .  .  .  .  180 
6.3 
Finite 
difference approximations for 
Greeks. 
190 
6.4 
The 
Black-Scholes 
PDE 
.  .  .  .  .  .  .  .  .  .  . 
191 
6.4.1  Financial 
interpretation 
of 
the 
Black-Scholes 
PDE 
.  193 
6.4.2 
The 
Black-Scholes 
PDE 
and 
the 
Greeks  194 
6.5  References 
6.6 
Exercises...................... 
7 
Multivariable 
calculus: 
chain 
rule, 
integration 
by 
substitu-
195 
196 
tion, 
and 
extrema. 
203 
7.1 
Chain 
rule for functions 
of 
several 
variables. 
.  .  .  .  .  .  .  .  .  .  203