1008
||||
CHAPTER 16 MULTIPLE INTEGRALS
is bounded by the circle with center the origin and radius 2
18. is the triangular region with vertices ,
, and
19–28 Find the volume of the given solid.
19. Under the plane and above the region
bounded by and
20. Under the surface and above the region bounded
by and
Under the surface and above the triangle with vertices
, , and
22. Enclosed by the paraboloid and the planes ,
, ,
23. Bounded by the coordinate planes and the plane
24. Bounded by the planes , , , and
25. Enclosed by the cylinders , and the planes
,
26. Bounded by the cylinder and the planes
, in the first octant
27. Bounded by the cylinder and the planes ,
, in the first octant
28. Bounded by the cylinders and
;
29. Use a graphing calculator or computer to estimate the
-coordinates of the points of intersection of the curves
and . If is the region bounded by these curves,
estimate .
xx
D
x dA
Dy 苷 3x x
2
y 苷 x
4
x
y
2
z
2
苷 r
2
x
2
y
2
苷 r
2
z 苷 0x 苷 0
y 苷 zx
2
y
2
苷 1
z 苷 0x 苷 0
x 苷 2y,y
2
z
2
苷 4
y 苷 4z 苷 0
y 苷 x
2
z 苷 x
2
z 苷 0x y 苷 2y 苷 xz 苷 x
3x 2y z 苷 6
z 苷 0y 苷 xy 苷 1
x 苷 0z 苷 x
2
3y
2
共1, 2兲共4, 1兲共1, 1兲
z 苷 xy
21.
x 苷 y
3
x 苷 y
2
z 苷 2x y
2
y 苷 x
4
y 苷 x
x 2y z 苷 0
共0, 3兲共1, 2兲
共0, 0兲
yy
D
2xy dA, D
D
yy
D
共2x y兲 dA,
17.
1–6 Evaluate the iterated integral.
1. 2.
3. 4.
6.
7–18 Evaluate the double integral.
7.
8.
9.
10.
11.
12.
,
, is bounded by , ,
14. , is bounded by
15. ,
is the triangular region with vertices (0, 2), (1, 1),
16.
yy
D
xy
2
dA, D is enclosed by x 苷 0 and x 苷
s
1 y
2
共3, 2兲D
yy
D
y
3
dA
y 苷
s
x
and y 苷 x
2
D
yy
D
共x y兲 dA
x 苷 1y 苷 x
2
y 苷 0D
yy
D
x cos y dA
13.
D 苷 兵共x, y兲
ⱍ
0 y 1, 0 x y其
yy
D
x
s
y
2
x
2
dA
yy
D
y
2
e
xy
dA, D 苷 兵共x, y兲
ⱍ
0 y 4, 0 x y其
yy
D
x
3
dA, D 苷 兵共x, y兲
ⱍ
1 x e, 0 y ln x其
yy
D
x dA, D 苷 兵共x, y兲
ⱍ
0 x
, 0 y sin x其
yy
D
y
x
5
1
dA, D 苷 兵共x, y兲
ⱍ
0 x 1, 0 y x
2
其
yy
D
y
2
dA, D 苷 兵共x, y兲
ⱍ
1 y 1, y 2 x y其
y
1
0
y
v
0
s
1 v
2
du dv
y
兾2
0
y
cos
0
e
sin
dr d
5.
y
2
0
y
2y
y
xy dx dy
y
1
0
y
x
x
2
共1 2y兲 dy dx
y
1
0
y
2
2x
共x y兲 dy dx
y
4
0
y
s
y
0
xy
2
dx dy
EXERCISES
16.3
EXAMPLE 6 Use Property 11 to estimate the integral , where is the disk
with center the origin and radius 2.
SOLUTION Since and , we have and
therefore
Thus, using , , and in Property 11, we obtain
M
4
e
yy
D
e
sin x cos y
dA 4
e
A共D兲 苷
共2兲
2
M 苷 em 苷 e
1
苷 1兾e
e
1
e
sin x cos y
e
1
苷 e
1 sin x cos y 11 cos y 11 sin x 1
Dxx
D
e
sin x cos y
dA