306 8. One Key Cryptosystems and Latin Arrays
9 : 04; 402, 042, 042, 042, 042, 402 10 : 04; 402, 044, 044, 044, 044, 402
11 : 04; 404, 042, 044, 044, 042, 044 12 : 04; 224, 042, 044, 044, 042, 224
13 : 02; 224, 042, 020, 020, 042, 042 14 : 02; 224, 032, 032, 032, 032, 042
15 : 03; 222, 044, 032, 032, 044, 222 16 : 02; 222, 042, 020, 020, 042, 222
17 : 04; 222, 042, 042, 042, 042, 222 18 : 04; 134, 134, 042, 042
, 134, 134
19 : 03; 120, 134, 134, 032, 032, 042 20 : 03; 120, 120, 120, 042, 042, 042
21 : 03; 120, 120, 120, 120, 120, 120 22 : 02; 134, 032, 033, 044, 020, 032
23 : 01; 134, 032, 020, 020, 032, 020 24 : 02; 134, 033, 032, 032, 033, 020
25 : 01; 120, 020, 020, 020, 020, 120 26 : 03; 120, 032, 032, 032, 032, 120
27 : 02; 120, 042, 032, 032, 042, 120 28 : 02; 120, 044
, 033, 033, 044, 120
29 : 01; 120, 020, 020, 032, 032, 042 30 : 02; 033, 033, 044, 044, 033, 033
31 : 04; 042, 042, 042, 042, 042, 042 32 : 02; 042, 044, 020, 020, 044, 042
33 : 01; 032, 020, 020, 032, 032, 020 34 : 01; 044, 032, 020, 020, 032, 044
35 : 01; 032, 032, 032, 032, 032, 032 36 : 00; 000, 000, 000, 044, 044, 044
37 : 00; 000, 000, 000, 000, 000
, 000 38 : 00; 000, 000, 000, 033, 033, 033
39 : 00; 020, 020, 000, 033, 032, 032 40 : 00; 020, 020, 000, 044, 020, 020
41 : 00; 020, 020, 000, 000, 020, 020 42 : 00; 032, 032, 000, 000, 032, 032
43 : 00; 033, 033, 000, 000, 033, 033 44 : 00; 042, 042, 000, 000, 042, 042
45 : 00; 042, 044, 000, 000, 044, 042 46 : 00; 042, 020, 020, 020, 020, 042
It is easy to verify that for any two distinct Ai43’s either their column char-
acteristic values are different, or their row characteristic sets are different.
From Corollary 8.2.1, it immediately follows that A
143,...,A4643 are not
isotopic to each other.
Lemma 8.2.7. Any (4, 3)-Latin array is isotopic to one of A143,...,A4643;
and any (4, 3, 1)-Latin array is isotopic to one of A3643,...,A4643.
Proof. The proof of this lemma is similar to Lemma 8.2.5 but more tedious.
We omit the details of the proof for the sake of space.
Theorem 8.2.12. I(4, 3) = 46,I(4, 3, 1) = 11.
Proof. This is immediate from Lemmas 8.2.6 and 8.2.7.
Theorem 8.2.13. U(4, 3, 1) = 306561024000,U(4, 3) = 805929062400.
Proof. For any Ax43, G
Ax43
is easy to determine from positions of re-
peated columns. For computing the order of G
Ax43
, we find out the set of