F. Rossi, P. van Beek, T. Walsh 209
[101] P. Meseguer and M. Sanchez. Specializing Russian doll search. In Principles
and Practice of Constraint Programming — CP 2001, LNCS, vol. 2239, Paphos,
Cyprus, November 2001, pages 464–478. Springer-Verlag, 2001.
[102] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Minimizing conflicts:
A heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence, 58:161–206, 1992.
[103] R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings of the
8th European Conference on Artificial Intelligence, pages 651–656, Munchen,
Germany, 1988.
[104] U. Montanari. Networksof constraints: Fundamental properties and applications
to picture processing. Inform. Sci., 7:95–132, 1974.
[105] U. Montanari. Networksof constraints: Fundamental properties and applications
to picture processing. Inform. Sci., 7:95–132, 1974.
[106] B. Nebel and H.-J. Burckert. Reasoning about temporal relations: A maximal
tractable subclass of Allen’s interval algebra. J. ACM, 42(1):43–66, 1995.
[107] W.J. Older and A. Vellino. Extending Prolog with constraint arithmetic on real
intervals. In Proceedings of IEEE Canadian Conference on Electrical and Com-
puter Engineering. IEEE Computer Society Press, 1990.
[108] G. Pesant, M. Gendreau, J. Potvin, and J. Rousseau. An exact constraint logic
programming algorithm for the traveling salesman problem with time windows.
Transportation Science, 32(1):12–29, 1998.
[109] A. Petcu and B. Faltings. A scalable method for multiagent constraint optimiza-
tion. In Proceedings of the 19th IJCAI, pages 266–271, 2005.
[110] A. Petcu and B. Faltings. ODPOP: An algorithm for open distributed constraint
optimization. In AAMAS 06 Workshop on Distributed Constraint Reasoning,
2006.
[111] T. Petit, J.-C. Régin, and C. Bessière. Meta-constraints on violations for over
constrained problems. In IEEE–ICTAI’2000 International Conference, pages
358–365, Vancouver, Canada, November 2000.
[112] T. Petit, J.-C. Régin, and C. Bessière. Specific filtering algorithms for over-
constrained problems. In Principles and Practice of Constraint Programming—
CP 2001, LNCS, vol. 2239, Paphos, Cyprus, November 2001, pages 451–463.
Springer-Verlag, 2001.
[113] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence, 9:268–299, 1993.
[114] J.-F. Puget. Breaking all value symmetries in surjection problems. In
P. van Beek, editor. Proceedings of Eleventh International Conference on Prin-
ciples and Practice of Constraint Programming (CP2005). Springer, 2005.
[115] C.-G. Quimper and T. Walsh. Beyond finite domains: The all different and
global cardinality constraints. In 11th International Conference on Principles
and Practices of Constraint Programming (CP-2005). Springer-Verlag, 2005.
[116] J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence, pages
362–367, Seattle, 1994.
[117] J.-C. Régin. Generalized arc consistency for global cardinality constraint. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence,
pages 209–215, Portland, OR, 1996.