G. Brewka, I. Niemelä, M. Truszczy´nski 283
[98] I. Niemelä. Towards efficient default reasoning. In Proceedingsof the 14thInter-
national Joint Conference on Artificial Intelligence, pages 312–318, Montreal,
Canada, August 1995. Morgan Kaufmann Publishers.
[99] I. Niemelä. Implementing circumscription using a tableau method. In W.
Wahlster, editor, Proceedings of the European Conference on Artificial Intel-
ligence, pages 80–84, Budapest, Hungary, August 1996. J. Wiley.
[100] I. Niemelä and J. Rintanen. On the impact of stratification on the complexity of
nonmonotonic reasoning. Journal of Applied Non-Classical Logics, 4(2):141–
179, 1994.
[101] D. Nute. Defeasible logic. In D. Gabbay, C.J. Hogger, and J.A. Robinson, edi-
tors. Nonmonotonic Reasoning and Uncertain Reasoning, Handbook of Logicin
Artificial Intelligence and Logic Programming, vol. 3, pages 353–395. Oxford
University Press, Oxford, 1994.
[102] H.J. Ohlbach. SCAN—elimination of predicate quantifiers. In M.A. McRobbie
and J.K. Slaney, editors. Automated Deduction: CADE-13, Notes in Artificial
Intelligence Lecture, vol. 1104, pages 161–165. Springer, 1996.
[103] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[104] J. Pearl. System Z: A natural ordering of defaults with tractable applications
to nonmonotonic reasoning. In Proceedings of the 3rd Conference on Theoreti-
cal Aspects of Reasoning about Knowledge, TARK-90, pages 121–135. Morgan
Kaufmann, 1990.
[105] D. Perlis. Autocircumscription. Artificial Intelligence, 36(2):223–236, 1988.
[106] J.L. Pollock. Justification and defeat. Artificial Intelligence, 67(2):377–407,
1994.
[107] D. Poole. A logical framework for default reasoning. Artificial Intelligence,
36:27–47, 1988.
[108] H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In
D. Gabbay and F. Guenthner, editors. Handbook of Philosophical Logic,vol.4,
2nd edition, pages 219–318. Kluwer Academic Publishers, Dordrecht, 2002.
[109] T.C. Przymusinski. An algorithm to compute circumscription. Artificial Intelli-
gence, 38(1):49–73, 1989.
[110] R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors.
Logic and Data Bases, pages 55–76. Plenum Press, 1978.
[111] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
[112] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. 1st edition. MIT Press, Cambridge, 2001.
[113] J. Rintanen. On specificity in default logic. In IJCAI, pages 1474–1479, 1995.
[114] V. Risch and C. Schwind. Tableau-based characterization and theorem proving
for default logic. J. Automat. Reason., 13:223–242, 1994.
[115] E. Sandewall. An approach to the frame problem, and its implementation. In
B. Meltzer and D. Michie, editors. Machine Intelligence, vol. 7, pages 195–204.
Edinburgh University Press, 1972.
[116] T. Schaub. On commitment and cumulativity in default logics. In Proceedings
of the European Conference on Symbolic and Quantitative Approaches to Rea-
soning and Uncertainty, ECSQARU-91, Lecture Notes in Computer Science,
vol. 548, pages 305–309. Springer, 1991.
[117] T. Schaub. A new methodology for query-answering in default logics via
structure-oriented theorem proving. J. Automat. Reason., 15(1):95–165, 1995.