542 12. Temporal Representation and Reasoning
[113] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The temporal analysis of fairness.
In Proc. 7th ACM Symposium on the Principles of Programming Languages
(POPL), pages 163–173, Las Vegas, Nevada, January 1980.
[114] D. Gabbay, M. Reynolds, and M. Finger. Temporal Logic: Mathematical Foun-
dations and Computational Aspects, vol. 2. Clarendon Press, Oxford, 2000.
[115] D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev.
Combining spatial and temporal logics: expressiveness vs. complexity. Journal
of Artificial Intelligence Research (JAIR), 23:167–243, 2005.
[116] A.P. Galton. The Logic of Aspect. Clarendon Press, Oxford, 1984.
[117] A.P. Galton. A critical examination of Allen’s theory of action and time. Artifi-
cial Intelligence, 42:159–188, 1990.
[118] A.P. Galton. An investigation of ‘Non-intermingling’ principles in temporal
logic. Journal of Logic and Computation, 6(2):271–294, 1996.
[119] A.P. Galton. Eventualities. In Fisher et al. [100], pages 25–58.
[120] J. Garson. Quantification in modal logic. In Gabbay and Guenthner [110], Chap-
ter II.6, pages 249–307.
[121] A. Gerevini. Processing qualitative temporal constraints. In Fisher et al. [100],
pages 247–278.
[122] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Proc. 15th IFIP WG6.1 International
Symposium on Protocol Specification, Testing and Verification (PSTV), IFIP
Conference Proceedings, vol. 38, pages 3–18. Chapman & Hall, 1996.
[123] R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes Stanford,
CA, 1987.
[124] R. Gómez and H. Bowman. PITL2MONA: implementing a decision procedure
for propositional interval temporal logic. Journal of Applied Non-Classical Log-
ics, 14(1–2):105–148, 2004.
[125] V. Goranko. Temporal logic with reference pointers. In ICTL’94 [158], pages
133–148.
[126] V. Goranko, A. Montanari, and G. Sciavicco. A general tableau method for
propositional interval temporal logics. In Proc. International Conference on Au-
tomated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX),
Lecture Notes in Computer Science, vol. 2796, pages 102–116. Springer, 2003.
[127] V. Goranko, A. Montanari, and G. Sciavicco. A road map of interval temporal
logics and duration calculi. Journal of Applied Non-Classical Logics, 14(1–
2):9–54, 2004.
[128] G.D. Gough. Decision procedures for temporal logic. Master’s thesis, Depart-
ment of Computer Science, University of Manchester, UK, October 1984.
[129] P. Gribomont and P. Wolper. In From Modal Logic to Deductive Databases:
Introducing a Logic Based Approach to Artificial Intelligence, pages 165–234.
Wiley, 1989 (chapter Temporal Logic).
[130] D. Guelev. A complete proof system for first-order interval temporal logic with
projection. Journal of Logic and Computation, 14(2):215–249, 2004.
[131] D. Guelev and D. van Hung. A relatively complete axiomatisation of projection
onto state in the duration Calculus. Journal of Applied Non-Classical Logics,
14(1–2):149–180, 2004.
[132] Y. Gurevich and S. Shelah. The decision problem for branching time logic. Jour-
nal of Symbolic Logic, 50(3):668–681, 1985.