
Nonhomogeneous Partial Differential Equations 505
25
210
215
220
0
y
z
5101520
Figure 8.3
If we set z =
√
λa, then the eigenvalues λ
n
are the values of z at the intersection points of the
curves shown in Figure 8.3. A few of the eigenvalues using the Maple fsolve command are
evaluated here:
> lambda[1]:=(1/aˆ2)*(fsolve((tan(z)+z),z=1..3)ˆ2);
λ
1
:= 4.115858365 (8.64)
> lambda[2]:=(1/aˆ2)*(fsolve((tan(z)+z),z=3..6)ˆ2);
λ
2
:= 24.13934203 (8.65)
> lambda[3]:=(1/aˆ2)*(fsolve((tan(z)+z),z=6..9)ˆ2);
λ
3
:= 63.65910654 (8.66)
First few terms of sum
> u(x,t):=s(x,t)+sum(v[n](x,t),n=1..3):
ANIMATION
> animate(u(x,t),x=0..a,t=0..5,thickness=3);
The preceding animation command displays the spatial-time-dependent solution of u(x, t) for
the given boundary conditions and initial conditions. The animation sequence here and in
Figure 8.4 shows snapshots of the animation at times t = 0, 1, 2, 3, 4, 5. Note how the solution
satisfies the given boundary and initial conditions.
ANIMATION SEQUENCE
> u(x,0):=subs(t=0,u(x,t)):u(x,1):=subs(t=1,u(x,t)):
> u(x,2):=subs(t=2,u(x,t)):u(x,3):=subs(t=3,u(x,t)):
> u(x,4):=subs(t=4,u(x,t)):u(x,5):=subs(t=5,u(x,t)):
> plot({u(x,0),u(x,1),u(x,2),u(x,3),u(x,4),u(x,5),x=0..a,thickness=10);