402 Thin film growth
© Woodhead Publishing Limited, 2011
 [21]  Karabacak T, Zhao Y P, Wang G C and Lu T M (2001), ‘Growth-front roughening 
in amorphous silicon lms by sputtering’, Phys. Rev. B, 64, 085323.
 [22]  Karabacak T, Zhao Y P, Wang G c and lu T M (2002), ‘Growth front roughening 
in silicon nitride lms by plasma-enhanced chemical vapor deposition’, Phys. Rev. 
B, 66, 075329.
 [23]  Xu X and Goodman D W (1992), ‘Metal deposition onto oxides: an unusual low initial 
sticking probability for copper on SiO
2
’, Appl. Phys. Lett., 61, 1799–1801.
 [24]  van Veldhuizen E M and de Hoog F J (1984), ‘Analysis of a Cu-Ne hollow cathode 
glow discharge at intermediate currents’, J. Phys. D: Appl. Phys., 17, 953–968.
 [25]  Bogaerts  A,  Naylor  J,  Hatcher  M,  Jones  W  J  and  Mason  R  (1998),  ‘Inuence 
of  sticking  coefcients  on  the  behavior  of  sputtered  atoms  in  an  argon  glow 
discharge: modeling and comparison with  experiment’,  J.  Vac.  Sci.  Technol. A, 
16, 2400–2410.
 [26]  Obara  K,  Fu  Z,  Arima  M,  Yamada  T,  Fujikawa  T,  Imamura  N  and  Terada  N 
(2002),  ‘collision  processes  between  sputtered  particles  on  high  speed  rotating 
substrate and atomic mass dependence of sticking coefcient’, J. Crystal Growth, 
237–239, 2041–2045.
 [27]  Migita S, Sakai K, Ota H, Mori Z and Aoki R (1996), ‘The inuence of Bi-sticking 
coefcient in the growth of Bi(2212) thin lm by ion beam sputtering’, Thin Solid 
Films, 281–282, 510–512.
 [28]  bogaerts A, Wagner e, Smith b  W, Winefordner J D, Pollmann D, Harrison W 
W and Gijbels R (1997), ‘Three-dimensional density proles of sputtered atoms 
and  ions in a direct current glow discharge: experimental study and comparison 
with calculations’, Spectrochimica Acta Part B, 52, 205–218. 
 [29]  Toprac A J, Jones b P, Schlueter J and cale T S (1995), ‘Modeling of collimated 
titanium  nitride  physical  vapor  deposition  using  a  combined  specular-diffuse 
formulation’, Mat. Res. Soc. Symp. Proc., 355, 575.
 [30]  Yamazaki O, Iyanagi K, Takagi S and Nanbu K (2002), ‘Modeling of Cu transport in 
sputtering using a Monte Carlo simulation’, Jpn. J. Appl. Phys., 41, 1230–1234.
 [31]  liu D, Dew S K, brett M J, Smy T and Tsai W (1994), ‘compositional variations 
in  Ti-W  lms  sputtered over  topographical features’,  J.  Appl.  Phys.,  75,  8114–
8120.
 [32]  buss r J, Ho P, breiland W G and coltrin M e (1988), in rubloff G W, Deposition 
and Growth: Limits for Microelectronics, AIP Conf. Proc. 167, 34.
 [33]  buss  r  J,  Ho  P,  breiland  W  G  and  coltrin  M  e  (1988),  ‘reactive  sticking 
coefcients for silane and disilane on polycrystalline silicon’, J. Appl. Phys., 63, 
2808–2819.
 [34]  Tsai c c, Shaw J G, Wacker b and Knights J c (1987), ‘Film growth mechanisms 
of amorphous silicon in diode and triode glow discharge systems’, Mat. Res. Soc. 
Symp. Proc., 95, 219.
 [35]  Perrin  J  and  broekhuizen  T  (1987),  ‘Modeling  of  Hg(
3
P
1
)  photosensitization of 
SiH
4
 and surface reactions of the SiH
3
 radical’, Mat. Res. Soc. Symp. Proc., 75, 
201–208.
 [36]  Perrin J and Broekhuizen T (1987), ‘Surface reaction and recombination of the SiH
3
 
radical on hydrogenated amorphous silicon’, Appl. Phys. Lett., 50, 433–435.
 [37]  Robertson R and Gallagher A (1986), ‘Mono- and disilicon radicals in silane and 
silane-argon dc discharges’, J. Appl. Phys., 59, 3402–3411.
 [38]  Robertson J (2000), ‘Growth mechanism of hydrogenated amorphous silicon’, J. 
Non-Cryst. Solids, 266–269, 79–83.
ThinFilm-Zexian-16.indd   402 7/1/11   9:46:41 AM