254 References
[65] Carlip, S., Clements, M., DellaPietra, S., and DellaPietra, V. (1990). Sewing
Polyakov amplitudes I: Sewing at a fixed conformal structure, Commun.
Math.
Phys. 127,
253-271.
[66] Carlip, S. and Cosgrove, R. (1994). Topology change in (2+l)-dimensional
gravity, J. Math. Phys. 35, 5477-5493.
[67] Carlip, S. and de Alwis, S. P. (1990). Wormholes in 2+1 dimensions,
Nucl. Phys. B337, 681-694.
[68] Carlip, S. and Nelson, J. E. (1994). Equivalent quantisations of (2+1)-
dimensional gravity, Phys. Lett. B324, 299-302.
[69] Carlip, S. and Nelson, J. E. (1995). Comparative quantizations of (2+1)-
dimensional gravity, Phys. Rev. D51, 5643-5653.
[70] Carlip, S. and Nelson, J. E. (1997). The quantum modular group in (2+1)-
dimensional gravity, in preparation.
[71] Carlip, S. and Teitelboim, C. (1995). Aspects of black hole quantum me-
chanics and thermodynamics in 2+1 dimensions, Phys. Rev. D51,
622-631.
[72] Carter, J. S., Flath, D. E., and Saito, M. (1995). The classical and quantum
6j-symbols, Mathematical Notes 43 (Princeton University Press, Princeton).
[73] Catterall, S. (1995). Simulations of dynamically triangulated gravity - an
algorithm for arbitrary dimension, Comput. Phys. Comm. 87, 409-415.
[74] Chan, K. C. K. (1997). Modifications of the BTZ black hole by a dilaton
and scalar, Phys. Rev. D55, 3564-3574.
[75] Chan, K. C. K. and Mann, R. B. (1996). Spinning black holes in (2+1)-
dimensional string and dilaton gravity, Phys. Lett. B371, 199-205.
[76] Choquet-Bruhat, Y., DeWitt-Morette, C, and Dillard-Bleick, M. (1977).
Analysis, manifolds and physics (North-Holland, Amsterdam).
[77] Clement, G. (1976). Field-theoretic extended particles in two space dimen-
sions,
Nucl. Phys. B114, 437-448.
[78] Clement, G. (1985). Stationary solutions in three-dimensional general rela-
tivity, Int. J. Theor. Phys. 24, 267-275.
[79] Collas, P. (1977). General relativity in two- and three-dimensional space-
times,
Am. J. Phys. 45, 833-837.
[80] Cornfeld, I. P., Fomin, S. V, and Sinai, Ya. G. (1982). Ergodic theory
(Springer, Berlin).
[81] Cosgrove, R. (1996). Consistent evolution with different time slicings in
quantum gravity, Class. Quant. Grav. 13, 891-920.
[82] Coussaert, O., Henneaux, M., and van Driel, P. (1995). The asymptotic dy-
namics of three-dimensional Einstein gravity with a negative cosmological
constant, Class. Quant. Grav. 12, 2961-2966.
[83] Creighton, J. D. E. and Mann, R. B. (1994). Temperature, energy, and
heat capacity of asymptotically anti-de Sitter black holes, Phys. Rev. D50,
6394-6403.
Cambridge Books Online © Cambridge University Press, 2009