Bipolar Quantum Trajectory Methods 249
BIBLIOGRAPHY
1. D. Frenkel and B. Smit, Understanding Molecular Simulations (Academic, New York,
2002).
2. G. D. Billing, Classical Path Method in Inelastic and Reactive Scattering, Int. Rev. Phys.
Chem. 13, 309 (1994).
3. N. Fröman and P.O. Fröman, JWKB Approximation (North-Holland, Amsterdam, 1965).
4. W. H. Miller, The Semiclassical Initial Value Representation: A Potentially Practical
Way for Adding Quantum Effects to Classical Molecular Dynamics Simulations, J. Phys.
Chem. A, 105, 2942 (2001).
5. G. A. Voth, Path-Integral Centroid Methods in Quantum Statistical Mechanics and
Dynamics, in I. Prigogine (ed.), Advances in Chemical Physics (Wiley, New York, 1996),
pp. 135–218.
6. J. C. Tully, Molecular Dynamics with Electronic Transitions, J. Chem. Phys. 93, 1061
(1990).
7. J. C. Tully, Nonadiabatic Dynamics, in D. L. Thompson (ed.), Modern Methods for
Multidimensional Dynamics Computations in Chemistry (World Scientific, Singapore,
1998).
8. Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering.
OrganizingCommittee for the Workshop on Information and Communications, Committee
on Challenges for the Chemical Sciences in the 21
st
Century, National Research Council,
2003.
9. B. K. Day, A. Askar, and H. Rabitz, Multidimensional Wave Packet Dynamics Within
the Fluid Dynamical Formulation of the Schrödinger Equation, J. Chem. Phys. 109, 8770
(1998).
10. C. L. Lopreore and R. E. Wyatt, Quantum Wave Packet Dynamics with Trajectories, Phys.
Rev. Lett. 82, 5190 (1999).
11. E. R. Bittner, Quantum Tunneling Dynamics using Hydrodynamic Trajectories, J. Chem.
Phys. 112, 9703 (2000).
12. R. E. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrody-
namics (Springer, New York, 2005).
13. D. Babyuk and R. E. Wyatt, Multidimensional Reactive Scattering with Quantum
Trajectories: Dynamics with 50–200 Vibrational Modes, J. Chem. Phys. 124, 214109
(2006).
14. V. E. Madelung, Quantentheorie in hydrodynamischer form, Z. Physik 40, 322 (1926)
15. D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Vari-
ables. I, Phys. Rev. 85, 166 (1952).
16. D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Vari-
ables. II, Phys. Rev. 85, 180 (1952).
17. P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge,
1993).
18. K. Berndl, M. Daumer, D. Dürr, S. Goldstein, and N. Zanghi, A Survey of Bohmian
Mechanics, Il Nuovo Cimento 110B, 735 (1995).
19. B. Poirier, Reconciling Semiclassical and Bohmian Mechanics: I. Stationary States,
J. Chem. Phys., 121, 4501–4515 (2004).
20. C.Trahanand B. Poirier, Reconciling Semiclassical and Bohmian Mechanics. II. Scattering
States for Discontinuous Potentials, J. Chem. Phys., 124, 034115 (2006).
21. C. Trahan and B. Poirier, Reconciling Semiclassical and Bohmian Mechanics. III. Scat-
tering States for Continuous Potentials, J. Chem. Phys., 124, 034116 (2006).