
26
o
ɹɜɥɹɟɬɫɹ ɧɭɥɟɜɨɣ ɮɭɪɶɟ-ɤɨɦɩɨɧɟɧɬɨɣ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ
V
(
q
):
Vq V r r iqr r
ij
j
ij
() (| |)exp{ ( )}
ooooo
¦
. (2.4)
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɢɦɟɟɦ:
HHRV
eff i
()0 H . (2.5)
ȼ ɫɥɭɱɚɟ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɥɢɲɶ ɛɥɢɠɚɣɲɢɯ ɫɨɫɟɞɟɣ
ɜɜɨɞɹɬ ɨɛɨɡɧɚɱɟɧɢɟ V(0) = ZJ, ɝɞɟ Z - ɱɢɫɥɨ ɛɥɢɠɚɣɲɢɯ ɫɨɫɟ-
ɞɟɣ; J - ɨɛɦɟɧɧɵɣ ɢɧɬɟɝɪɚɥ. ɂɫɩɨɥɶɡɭɹ ɩɪɢɛɥɢɠɟɧɢɟ ɫɪɟɞɧɟɝɨ
ɩɨɥɹ, ɡɚɦɟɧɢɦ ɢɫɬɢɧɧɨɟ ɩɨɥɟ ɷɮɮɟɤɬɢɜɧɵɦ (2.5). Ɍɨɝɞɚ ɫɪɟɞ-
ɧɢɣ ɦɚɝɧɢɬɧɵɣ ɦɨɦɟɧɬ
P
EP
EP EP
i
iii
ii
ii ii
ii ii
Sp H
Sp H
HH
HH
!
!
! !
! !
exp[ ]
exp[ ]
exp[ ] exp[ ]
exp[ ] exp[ ]
,
(
E
=1/T), ɨɬɤɭɞɚ ɧɟɦɟɞɥɟɧɧɨ ɩɨɥɭɱɚɟɦ ɫɚɦɨɫɨɝɥɚɫɨɜɚɧɧɨɟ
ɭɪɚɜɧɟɧɢɟ ȼɟɣɫɫɚ:
>@
RHV th
E
()0 R
j
. (2.6)
ȿɫɥɢ ɫɪɚɜɧɢɬɶ ɟɝɨ ɫ ɭɪɚɜɧɟɧɢɟɦ (1.11), ɬɨ ɥɟɝɤɨ ɡɚɦɟɬɢɬɶ, ɱɬɨ
ɪɨɥɶ ɬɟɦɩɟɪɚɬɭɪɵ Ʉɸɪɢ
4
ɢɝɪɚɟɬ ɜɟɥɢɱɢɧɚ V(0). ɗɬɨ ɭɪɚɜɧɟ-
ɧɢɟ ɦɵ ɭɠɟ ɢɫɫɥɟɞɨɜɚɥɢ ɜ ɩ.1.3. Ɉɬɦɟɬɢɦ ɬɨɥɶɤɨ, ɱɬɨ ɩɪɢ V(0)
> 0 ɢ ɩɪɢ
E
V(0) >1 (T <
4
) ɭɪɚɜɧɟɧɢɟ (2.6) ɨɩɢɫɵɜɚɟɬ ɢɦɟɧɧɨ
ɮɟɪɪɨɦɚɝɧɢɬɧɨɟ ɫɨɫɬɨɹɧɢɟ, ɜ ɫɨɨɬɜɟɬɫɬɜɢɢɢ ɫ (1.19).
ȿɳɟ ɪɚɡ ɢɫɫɥɟɞɭɟɦ ɜɨɩɪɨɫ, ɜ ɤɚɤɨɦ ɩɪɟɞɟɥɶɧɨɦ ɫɥɭɱɚɟ
ɦɨɠɧɨ ɫɱɢɬɚɬɶ ɩɪɢɛɥɢɠɟɧɢɟ ɦɨɥɟɤɭɥɹɪɧɨɝɨ ɩɨɥɹ ȼɟɣɫɫɚ ɬɨɱ-
ɧɵɦ. Ɉɬɜɟɬ ɨɱɟɜɢɞɟɧ: ɱɢɫɥɨ ɱɚɫɬɢɰ, ɜɧɨɫɹɳɢɯ ɜɤɥɚɞ ɜ ɩɨɥɟ
, ɞɟɣɫɬɜɭɸɳɟɟ ɧɚ ɨɬɞɟɥɶɧɵɣ ɫɩɢɧ, ɞɨɥɠɧɨ
ɛɵɬɶ ɜɟɥɢɤɨ. Ɍɨɝɞɚ ɧɚɩɪɚɜɥɟɧɢɟ ɪɚɫɫɦɚɬɪɢɜɚɟɦɨɝɨ ɫɩɢɧɚ ɧɟ
ɦɨɠɟɬ ɫɢɥɶɧɨ ɜɥɢɹɬɶ ɧɚ ɧɚɩɪɚɜɥɟɧɢɟ ɫɩɢɧɚ, ɞɚɸɳɟɝɨ ɜɤɥɚɞ ɜ
ɩɨɥɟ, ɞɟɣɫɬɜɭɸɳɟɟ ɧɚ ɩɟɪɜɵɣ ɫɩɢɧ, ɬɚɤ ɤɚɤ ɷɬɨɬ ɜɬɨɪɨɣ ɫɩɢɧ
ɭɞɟɪɠɢɜɚɟɬɫɹ ɧɚ ɦɟɫɬɟ (Z-1) ɨɫɬɚɥɶɧɵɦɢ ɫɩɢɧɚɦɢ, ɝɞɟ Z - ɱɢɫ-
ɥɨ ɫɩɢɧɨɜ ɜ ɫɮɟɪɟ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ (ɜ ɩɪɢɛɥɢɠɟɧɢɢ ɛɥɢɠɚɣ-
ɲɢɯ ɫɨɫɟɞɟɣ ɫɨɜɩɚɞɚɸɳɟɟ ɫ ɢɯ ɱɢɫɥɨɦ). Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɩɚɪɚ-
ɦɟɬɪ ɦɚɥɨɫɬɢ ɜ ɩɪɢɛɥɢɠɟɧɢɢ ɫɪɟɞɧɟɝɨ ɩɨɥɹ: 1/Z << 1.
HV
iij
j
¦
P