
K I N E M A T I C S :  T H E  G E O M E T R Y   O F  M O T I O N 40
           x = rcosφ  and y = rsinφ,     (2.21 a,b)
or
          x = f(r, φ)  and y = g(r, φ).
The differentials are
                    dx = (∂f/∂r)dr + (∂f/∂φ)dφ  and  dy = (∂g/∂r)dr + (∂g/∂φ)dφ.
We are interested in the transformation of the components of the velocity vector under
[x, y] → [r, φ].  The velocity components involve the rates of change of dx and dy with
respect to time:
 dx/dt = (∂f/∂r)dr/dt + (∂f/∂φ)dφ/dt  and  dy/dt = (∂g/∂r)dr/dt + (∂g/∂φ)dφ/dt
or
                                   
•
                
•
                  
•
          
•
                 
•
                   
•
                       x = (∂f/∂r)r + (∂f/∂φ)φ  and  y = (∂g/∂r)r + (∂g/∂φ)φ.      (2.22)
But,
                ∂f/∂r = cosφ, ∂f/∂φ = –rsinφ, ∂g/∂r = sinφ, and ∂g/∂φ = rcosφ,
therefore, the velocity transformations are
                                   
•
              
•
               
•
                       x = cosφ r – sinφ(r φ) = v
x
(2.23)
and
                                   
•
             
•
                 
•
                       y = sinφ r + cosφ(r φ) = v
y
. (2.24)
These equations can be written
                         v
x
           cosφ    –sinφ      dr/dt      
                                       =                                             .    
                    v
y
           sinφ      cosφ      rdφ/dt    
Changing φ → –φ, gives the inverse equations