982 Bibliography
Farwig, R., 2003, Weighted L
q
-Helmholtz Decompositions in Infinite Cylinders
and in Infinite Layers, Adv. Differential Equations, 8, 357-384 [Notes for III]
Farwig, R., 2005, Estimates of Lower Order Derivatives of Viscous Fluid Flow
past a Rotating Obstacle, Banach Center Publ., Polish Acad. Sci., Warsaw,
70, 73-84 [Notes for VIII]
Farwig, R., 2006, An L
q
-Analysis of V iscous Fluid Flow Past a Rotating Obstacle,
Tohoku Math. J., 58, 129-147 [VIII.8, Notes for VIII]
Farwig, R., Galdi, G.P., and Kyed, M., 2010, Asymptotic Structure of a Leray
Solution to the N avier-Stokes Flow Around a Rotating Body, Pac ific J. Math.,
in press [Introduction to XI, XI.7]
Farwig, R., Galdi, G.P., and Sohr, H, 2006, Very Weak Solutions and Large
Uniqueness Classes of Stationary Navier-Stokes Equations in Bounded Do-
mains of R
2
, J. Differential Equations, 227, 564-580 [Notes for IX]
Farwig, R., and Hishida, T., 2007, Stationary Navier-Stokes Flow Around a Ro-
tating Obstacle, Funkcial. Ekvac., 50, 371-403 [Notes for VIII]
Farwig, R., and Hishida, T., 2009, Asymptotic Profile of Steady Stokes Flow
Around a Rotating Obstacle, Preprint, TU Darmstadt [VIII.6, XI.7, I ntro-
duction to XI]
Farwig, R., and Hishida, T., 2009, Leading Term at Infinity of Steady Navier-
Stokes Flow around a Rotating Obstacle, Preprint 2591, TU Darmstadt, 20
pp. [XI.7]
Farwig, R., Hishida, T., and Muller, D., 2004,
¨
L
q
-Theory of a Singular “Wind-
ing” Integral Operator Arising from Fluid Dynamics, Pacific J. Math., 215,
297-312 [N otes for VIII]
Farwig, R., Kozono, H. and Yanagisawa, T., 2010, Leray’s Inequality in Gen-
eral Multi-Connected Domains in R
n
, Preprint, TU Darmstadt [IX.4]
Farwig, R., Krbec, M., and Ne
ˇ
casov
´
a, S., 2008, A Weighted L
q
-Approach to
Stokes Flow Around a Rotating Body, Ann. Univ. Ferrara Sez. VII ( N.S.), 54,
61-84 [Notes for VIII]
Farwig, R., Novotn
´
y, A., and Pokorn
´
y, M., 2000, The Fundamental Solution
of a Modified Oseen Problem, Z. Anal. Anwendungen, 19, 713-728 [Notes for
VII]
Farwig, R., Simader, C.G., and Sohr, H., 19 93, An L
q
-Theory for Weak Solu-
tions of the Stokes System in Exterior Domains, Math. Meth. in the Appl. Sc i.,
16, 707-723 [Notes for V]
Farwig, R., and Sohr, H., 1994a, The Stationary and Non-stationary Stokes Sys-
tem in Exterior Domains with Non-zero Divergence and Non-zero Boundary
Values, Math. Meth. Appl. Sci., 17, 269-291 [Notes for III]
Farwig, R., and Sohr, H., 1994b, On the Stokes and Navier–Stokes System for
Domains with Noncompact Boundary in L
q
–Spaces, Math. Nachr., 170, 53–77
[Notes for VI]
Farwig, R., and Sohr, H., 1995, Weighted Energy Inequalities for the Navier-
Stokes Equations in Exterior Domains, Appl. Anal., 58, 157-173 [Notes for X,
Notes for XII]
Farwig, R., and Sohr, H., 1996, Helmholtz Decomposition and Stokes Resolvent
System for Aperture Domains in L
q
–Spaces, Anal ysis, 16, 1-26 [Notes for III]
Farwig, R., & Sohr, H., 1998, Weighted Estimates for the Oseen Equations and
the Navier-Stokes Equations in Exterior Domains, Theory of the Navier-Stokes
equations, Heywood J.G., Masuda, K., Rautmann R., & Solonnikov, V.A., Eds.,