
Houseley, R.M., Grant, R.W., and Patton, N.E., 1973. Origin and char-
acteristics of Fe metal in lunar glass welded aggregates. Geochi-
mica et Cosmochimica Acta, 35, Supplement(4): 2737–2749.
Kirschvink, J.L., Maine, A.T., and Vali, H., 1997. Paleomagnetic evi-
dence of a low temperature origin of carbonate in the Martian
meteorite ALH84001. Science, 275: 1629–1638.
Kivelsen, M., Bargatgze, L.F., Khurana, K.K., Southwood, D.J.,
Walker, R.J., and Coleman, P.J., 1993. Magnetic field signatures
near Galileo’s closest approach to Gaspra. Science, 271: 331–334.
Kletetschka, G., Wasilewski, P.J., and Taylor, P.T., 2000a. Hematite vs.
magnetite as the signature for planetary magnetic anomalies? Phy-
sics of the Earth and Planetary Interiors, 119: 259– 267.
Kletetschka, G., Wasilewski, P.J., and Taylor, P.T., 2000b. Mineralogy
of the sources for magnetic anomalies on Mars. Meteoritics and
Planetary Science, 35: 895–899.
Kletetschka, G., Wasilewski, P.J., and Taylor, P.T., 2002. The role of
hematite-ilmenite solid solution in the production of magnetic anoma-
lies in ground- and satellite-based data. Tectonophys ics, 347: 167–177.
Lanoix, M., Strangway, D.W., and Pearce, G.W., 1978. The primordial
magnetic field preserved in chondrules of the Allende meteorite.
Geophysical Research Letters, 5:73–76.
Lin, R.P., Anderson, K.A., and Hood, L.L., 1988. Lunar surface mag-
netic field concentrations antipodal to young large impact basins.
Icarus, 74: 529–541.
Lucey, P.G., Taylor, G.J., and Malareet, E., 1995. Abundance and
distribution of iron on the moon. Science, 268: 1150–1153.
McSween, H.Y., 2000. Meteorites and their Parent Planets.
Cambridge: Cambridge University Press.
Mitchell, D.L., Lillis, R., Lin. R.P., Connerney, J., and Acuna, M.,
2003. Evidence for Demagnetization of the Utopia Impacet Basin
on Mars, Eos, Transactions, American Geophysical Union, 84,
46, ABS., GP22A-08.
Morden, S.J., and Collinson, D.W., 1992. The implications of the mag-
netism of ordinary chondrite meteorites. Earth and the Planetary
Science Letters, 109(1–2): 185–204.
Nagata, T., Fisher, R.M., and Schwerer, F.C., 1972. Lunar rock mag-
netism. The Moon, 4: 160–186.
Nagata, T., and Funaki, M., 1981. The comparison of natural remanent
magnetization of an Antarctic chondrite ALH 76009 L6. Proceed-
ings of the Lunar Planetary Science Conference, 12B: 1229–1241.
Nagata, T., and Sugiura, N., 1977. Paleomagnetic field intensity
derived from meteorite magnetization. Physics of the Earth and
Planetary Interiors, 13: 373–379.
Özdemir, O., 2000. Chemical remanent magnetization-possible source
for the magnetization of Martian crust (abstract), American Geo-
physical Union Spring Meeting GP31A-05.
Özdemir, O., and Dunlop, D.J., 2002. Thermoremanence and stable
memory of single-domain hematites. Geophysical Research Let-
ters, 29, No. 18 10.1029/2002GL015597.
Pearce, G.W., Williams, R.J., and McKay, D.S., 1972. The magnetic
properties and morphology of metallic iron produced by sub-soli-
dus reduction of synthetic Apollo 11 composition glasses. Earth
and Planetary Science Letters, 17:95–104.
Richter, L., Brinza, D.E., Cassel, M., Glassmeir, K.-H., Kunhke, F.,
Musman, G., Ohtmer, C., Schwingenschu, and Tsurutani, 2001.
First direct field measurements of an asteroidal magnetic field:
DSI at Braille. Geophysical Research Letters, 28(10): 1913–1916.
Robinson, P., Harrison, R.J., McEnroe, S.A., and Hargraves, R.B.,
2000. Lamellar magnetism in the hematite-ilmenite series as an expla-
nation for strong remanent magnetization. Natur e, 418: 517–520 .
Rochette, P., Lorand, G., Fillion, G., and Sautter, V., 2001. Pyrrhotite
and the remanent magnetization of SNC meteorites: a changing
perspective on martian magnetism. Earth and Planetary Science
Letters, 190:1–12.
Runcorn, S.K.R., 1975. An ancient lunar magnetic dipole field.
Nature, 253: 701–703.
Russell, C.T., Weiss, H., Colema, P.J., Soderblom. L.A., Stuart-Alexander,
D.E., and Wilhelms, D.E., 1975. Geologic-magnetic correlations
on the Moon: sub-satellite results, Proceeedings of the eight Lunar
Conference. Geochimica et Cosmochimica Acta, 41, Supplement 8:
1171–1185.
Scott, E., and Fuller, M., 2004. A possible source for the martian crus-
tal magnetic field, EPSL., 220, 83–90.
Shaw, J., 1974. Anew method of determining the magnitude of the
paleomagnetic field. Geophysical Journal of the Royal Astronomi-
cal Society, 15: 205–211.
Shaw, J., Hill, M.J., and Openshaw, S.J., 2001. Investigating the mar-
tian magnetic field using microwaves. Earth and Planetary Science
Letters, 190: 103–109.
Smethurst, M. T., and Herrero-Bervera, E., 2002. Paleomagnetic ana-
lysis of Calcium-Aluminium Inckusions (CAI’s) from the Allende
meteorite EOS Trans. AGu, 83(47) Fall meet. Suppl., Abstract
GP72A-0989.
Srnka, L.J., Martelli, G., Newton, G., Cisowski, S.M., Fuller, M., and
Schaal, R.B., 1979. Magnetic field and shock effects and remanent
magnetization in a hypervelocity impact experiment. Earth and
Planetary Science Letters, 42: 127–137.
Solomon, S. C., Aharonson, O., Banerdt, W. B., Dombard, A. J., Frey,
H. V., Golombek, M. P., Hauck, III, S. A., Head, III, J. W.,
Johnson, C. L., McGovern, P. J. Phillips, R. J., Smith, D. E., and
Zuber, M. T., 2003. Why are there so few magnetic anomalies in
Martian Lowlands and Basins?, Abstract, Lunar Planetary Science,
XXXIV #1382, CD-ROM.
Stacey, F.D., Lovering, J.F., and Parry L.G., 1961. Thermomagnetic
properties natural magnetic moments and magnetic anisotropies
of some chondritic meteorites. Journal of Geophysical Research,
66: 1523–1534.
Stegman, D.R., Jellinek, A.M., Zatman, S.A., Baumgardnerk, J.R., and
Richards, M.A., 2003. An early lunar Core dynamo driven by ther-
mochemical mantle evolution. Nature, 451: 146.
Stevenson, D.J., 2001. Mars’ core and magnetism. Nature, 412:
214–219.
Strangway, D.W., Larson, E.E., and Perce, G.W., 1970. Magnetic stu-
dies of Lunar samples, breccias and fines, Proceedings of the
Apollo 11, Lunar Science Conference. Geochimica et Cosmochi-
mica Acta, Supplement 1: 2435–2451.
Strangway, D.W., Pearce, G.W., Gose, W.A., and McConnell, R.K.,
1973. Lunar magnetic anomalies and the Cayley Formation.
Nature, 246:112–114.
Thomas-Keprta, K.L., Bazylinski, D.A., Kirschvink, J.L., Clement, S.J.,
McKay, D.S., Wentworth, S.J., Vali, H., Gibson, Jr. E. K., and
Romanek, C.S., 2000. Elongated prismatic magnetite crystals in
ALH84001 carbonate globules: Potential Martian magnetofossils.
Geochimica et Cosmochimica Acta, 64:4049–4081.
Wasilewski, P.J., 1988. Magnetic characterization of the new mineral
tetrataenite and its contrast with isochemical taenite. Physics of
the Earth and Planetary Interiors, 52(1–2): 150–158.
Wasilewski, P.J., and Fuller, M., 1975. Magnetochemistry of the
Apollo landing sites. The Moon, 14:79–101.
Wasilewski, P.J., Acuna, M.H., and Kletetschka, G., 2002. 433 Eros,
problems with the meteorite magnetism record in attempting an
asteroid match. Meteoritics and Planetary Science, 37 : 937–950.
Weiss, B.P., Kirschvink, J.L., Baudenbacher, F.J., Vali, H., Peters, N.T.,
Macdonald, F.A., and Wikswo, J.P., 2000. A low temperature trans-
fer of ALH84001 from Mars to Earth. Science, 290:791–795.
PALEOMAGNETISM, OROGENIC BELTS
Orogenic belts are the key signature of Plate Tectonics at the sites of
plate convergence. At these margins the consumption of ancient ocean
basins culminates in the collision of blocks of continental crust and
this is responsible for deforming broad tracts of crust on either side
of the site of collision (suture). The deformed rocks are mostly marine
PALEOMAGNETISM, OROGENIC BELTS 801