
Particle Swarm Optimization
130
distribution of PSO and PPSO are different so that leading to different equilibrium points
and, hence, different results and performances.
The results derived in this chapter justify the possibility of PPSO to be an optimization
algorithm. Simulation results have been shown that PPSO performs in general better than
PSO on a suite of benchmark functions. However, it does not imply that PPSO is a local or
global search algorithm even the condition of stability is met. Further research is thus
required to improve the search capability.
6. References
Chen, C. H. & Yeh, S. N. (2006a), Personal best oriented constriction type of particle swarm
optimization, The 2nd international conference on cybernetics and intelligent systems,
pp. 167-170, Bangkok, Thailand, 7-9 Jun., 2006.
Chen, C. H. & Yeh, S. N. (2006b), Particle swarm optimization for economic power dispatch
with valve-point effects, 2006 IEEE PES transmission and distribution conference and
exposition : Latin America, 6 pages, Caracas, Venezuela, 16-19 Aug., 2006.
Chen, C. H. & Yeh, S. N., (2007), Simplified personal best oriented particle swarm optimizer
and its applications, The 2nd IEEE Conference on Industrial Electronics and
Applications, pp.2362-2365, Harbin, China, 23-25 May, 2007.
Chen, C. H. & Yeh, S. N. (2008), Personal best oriented particle swarm optimizer for
economic dispatch problem with piecewise quadratic cost functions, International
Journal of Electrical Engineering, vol. 15, no.5, 2008, pp.389-397.
Clerc M. & Kennedy J., (2002), The particle swarm – explosion, stability and convergence in
a multidimensional complex space, IEEE Transaction on Evolutionary Computation,
vol.6, no.1, 2002, pp.58-73.
Eberhart R. C. & Kennedy J. (1995), A new optimizer using particle swarm theory,
Proceedings of the IEEE 6th International Symposium on Micro Machine and Human
Science, pp. 39-43, vol.1, Oct., 1995.
Kennedy J., & Eberhart R. C. (1995), Particle swarm optimization, Proceedings of the IEEE
International Conference on Neural Networks, pp.1942-1948, vol.4, Perth, Australia,
Nov., 1995.
Kennedy J. (1998), The behaviour of particle, Proceedings of the 7th Annual Conference on
Evolutionary Programming, pp.581-589, 1998.
Kennedy J. (2003), Bare bones particle swarms, Proceedings of the IEEE Swarm Symposium,
2003, pp.80-87.
Jiang, M.; Luo Y.P. & Yang S. Y., (2007), Stochastic convergence analysis and parameter
selection of the standard particle swarm optimization algorithm, Information
Processing Letters, vol.102, 2007, pp.8-16.
Ozcan E. & Mohan C. K., (1999), Particle swarm optimization: surfing the waves, Proceedings
of the IEEE Congress on Evolutionary Computation, pp.1939-1944, vol.3, Jul., 1999.
Trelea I. C., (2003), The particle swarm optimization algorithm: convergence analysis and
parameter selection, Information Processing Letters, vol.85, 2003, pp.317-325.
van den Bergh F. (2002), Analysis of particle swarm optimization, Ph.D. dissertation,
University of Pretoria, Pretoria, South Africa, 2002.
Yasuda K., Ide A. & Iwasaki N., (2003), Adaptive particle swarm optimization, pp.1554-1559,
IEEE International Conference on Systems, Man and Cybernetics, vol.2, Oct., 2003.