
Searching for the best Points of interpolation using swarm intelligence techniques
153
6. Conclusion
The particle swarm optimization is used to investigate the best interpolating points. Some
good results are obtained by using the specific PSO approach. It is now known that the PSO
scheme is powerful, and easier to apply specially for this type of problems. Also, the PSO
method can be used directly and in a straightforward manner. The performance of the
scheme shows that the method is reliable and effective.
7. References
Clerc, M. (1999). The swarm and the queen: towards a deterministic and adaptive particle
swarm optimization, Proceedings of the 1999 IEEE Congress on Evolutionary
Computation, pp.1951—1957, Washington DC.
Cristian, T.I. (2003). The particle swarm optimization algorithm: convergence analysis and
parameter selection, Information Processing Letters, Vol. 85, No. 6, pp.317--325.
David Kincaid and Ward Cheney, (2002). Numerical Analysis: Mathematics of Scientific
Computing. Brooks/Cole.
Eberhart, R.C. and Kennedy, J. (1995). A new optimizer using particles swarm theory', Sixth
International Symposium on Micro Machine and Human Science, pp.39--43, Nagoya,
Japan.
Eberhart, R.C. and Shi, Y. (1998). Parameter selection in particle swarm optimization, in
Porto, V.W.,
Eberhart, R.C. et al (1996). Computational Intelligence PC Tools, Academic Press Professional,
Boston.
Fourie, P.C. and Groenwold, A.A. (2000). Particle swarms in size and shape optimization',
Proceedings of the International Workshop on Multi-disciplinary Design Optimization,
August 7--10, pp.97—106, Pretoria, South Africa.
Fourie, P.C. and Groenwold, A.A. (2001). Particle swarms in topology optimization',
Extended Abstracts of the Fourth World Congress of Structural and Multidisciplinary
Optimization, June 4--8, pp.52, 53, Dalian, China.
Hammer, R. Et al (1995). Numerical Toolbox for Verified Computing I, Springer Verlag,
Berlin.
Kennedy, J. 1998. The behavior of particles, Evol. Progr., Vol. VII, pp.581-587.
Kennedy J. and Eberhart, R.C, (1995). Particle swarm optimization, Proc. IEEE Int. Conf.
Neural Networks, Piscataway, NJ, pp.1942--1948, USA.
Kennedy, J. and Eberhart, R.C. (2001). Swarm Intelligence, Morgan Kaufmann Publishers, San
Francisco.
Kennedy, J. and Spears, W.M. (1998). Matching algorithms to problems: an experimental test
of the particle swarm and some genetic algorithms on the multimodal problem
generator, Proceedings of the (1998) IEEE International Conference on Evolutionary
Computation, Anchorage, May 4--9, Alaska.
Kulisch, U. and Miranker, W.L. (1983). A New Approach to Scientific Computation,
Academic Press, New York.
L. N. Trefethen. Spectral Methods in Matlab. SIAM, (2000). 9, Philadelphia
L. Djerou, M. Batouche, N. Khelil and A.Zerarka, (2007). Towards the best points of
interpolation using Particles swarm optimization approach, in proceedings of IEEE
Congress of Evolutionary Computing, CEC 2007, pp. 3211-3214, Singapore.