
118
Simplified meridional flow analysis for axial turbomachines
Table 5.3 Comparison of radial equilibrium axial velocity profiles for solid body swirl predicted
by approximate analysis and by numerical method (computer program RE-DES)
r co
Cxoo Cxoo
Approx. method, Numerical method,
Eqn (5.52) axial velocity
0.4 0.4 1.356 466 1.379 527
0.5 0.5 1.288 410 1.312 666
0.6 0.6 1.200 000 1.226 007
0.7 0.7 1.086 278 1.114 941
0.8 0.8 0.938 083 0.971 130
0.9 0.9 0.734 847 0.776 591
1.0 1.0 0.400 000 0.472 329
Table 5.4 Radial equilibrium profiles predicted by program RE-DES for free-vortex and
constant swirl flows
Free-vortex swirl
Constant swirl velocity
r c o c x Co cx
0.40 2.500 00 1.000 012 1.0 1.495 487
0.45 2.222 22 1.000 008 1.0 1.414 537
0.50 2.000 00 0.999 999 1.0 1.337 981
0.55 1.818 18 1.000 005 1.0 1.264 742
0.60 1.666 67 0.999 995 1.0 1.193 965
0.65 1.538 46 1.000 003 1.0 1.124 930
0.70 1.428 57 1.000 004 1.0 1.057 002
0.75 1.333 33 1.000 005 1.0 0.989 579
0180 1.250 00 1.000 001 1.0 0.922 057
0.85 1.176 47 1.000 001 1.0 0.853 780
0.90 1.111 11 1.000 002 1.0 0.783 979
0.95 1.052 63 1.000 002 1.0 0.711 680
1.00 1.000 00 1.000 001 1.0 0.635 532
This is found to be in reasonable agreement with the precise result obtained from
the numerical procedure.
5.3.2 Solution of the radial equilibrium direct problem
We now consider the 'direct' or 'analysis' problem in which the blade geometry and
hence fluid deflection is specified and we are required to calculate the resulting axial
velocity profile
Cx(r).
In reality, as illustrated previously in Fig. 5.3, radial equilibrium
develops progressively as the fluid proceeds from -oo to +oo. Simple radial
equilibrium theory, on the other hand, assumes that equilibrium is achieved
completely by the time the fluid leaves the blade trailing edge. The contour abcd,