
30.5 OUTLOOK
AFM based SMFS is a powerful tool in studying the
intermolecular and intramolecular interaction in polymer
systems, leading to opening a new field of nanomechanics
of polymers. Although many elegant experiments have been
performed, it must be point out that SMFS is still in the
nascent stage. The technique itself can be improved and
introduce new functions. For example, introduction of
force clamp mode allow for following the dynamic process
of the folding or unfolding probability of proteins [73]. It
will be necessary to combine SMFS with other spectro-
scopic methods in order to link the force signal with struc-
ture change. In addition, theoreticians and experimenters
need collaborate to realize the full potential of SMFS.
After accumulating enough data in her information store-
room and in combination with other detection methods,
SMFS will provide us new insight into the basic problems
in polymer science and life science.
ACKNOWLEDGMENTS
This research was supported by the Major State Basic
Research Development Program (G2000078102), National
Natural Science Foundation of China (20474035), and Min-
istry of Education.
REFERENCES
1. Binnig G, Quate CF, Gerber C (1986) Phys. Rev. Lett. 56:930
2. Weisenhorn AL, Hansma PK, Albrecht TR, Quate CF (1989) Appl.
Phys. Lett. 54:2651
3. Janshoff A, Neitzert M, Oberdorfer Y, Fuchs H (2000) Angew. Chem.,
Int. Ed. 39:3212
4. Hugel T, Seitz M (2001) Macromol. Rapid Commun. 22:989
5. Zhang WK, Zhang X (2003) Prog. Polym. Sci. 28:1271
6. Smith SB, Finzi L, Bustamante C (1992) Science (Washington, DC,
US) 258:1122
7. Ashkin A, Schu
¨
tze K, Dziedzic JM, Euteneuer U, Schliwa M (1990)
Nature (London, UK) 348:346
8. Kishino A, Yanagida T (1988) Nature (London, UK) 334:74
9. Evans E, Ritchie K, Merkel R (1995) Biophys. J. 68:2580
10. Li HB, Liu BB, Zhang X, Gao CX, Shen JC, Zou GT (1999) Langmuir
15:2120
11. Li HB, Zhang WK, Zhang X, Shen JC, Liu BB, Gao CX, Zou GT
(1998) Macromol. Rapid Commun. 19:609
12. Li HB, Zhang WK, Xu WQ, Zhang X (2000) Macromolecules 33:465
13. Oesterhelt F, Rief M, Gaub HE (1999) New J. Phys. 1:6.1
14. Ortiz C, Hadziioannou G (1999) Macromolecules 32:780
15. Bemis JE, Akhremitchev BB, Walker GC (1999) Langmuir 15:2799
16. Zhang WK, Zou S, Wang C, Zhang X (2000) J. Phys. Chem. B
104:10258
17. Wang C, Shi WQ, Zhang WK, Zhang X, Katsumoto Y, Ozaki Y (2002)
Nano Lett. 2:1169
18. Zhang WK (2002) PhD Thesis, Jilin University
19. Zhang WK, Xu QB, Zou S, Li HB, Xu WQ, Zhang X, Shao ZZ, Kudera
M, Gaub HE (2000) Langmuir 16:4305
20. Yamamoto S, Tsujii Y, Fukuda T (2000) Macromolecules 33:5995
21. Shi WQ, Cui SX, Wang C, Wang LY, Zhang X, Wang XJ, Wang L
(2004) Macromolecules 37:1839
22. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997)
Science (Washington, DC, US) 276:1109
23. Rief M, Gautel M, Schemmel A, Gaub HE (1998) Biophys. J. 75:3008
24. Tskhovrebova L, Trinick J, Sleep JA, Simmons RM (1997) Nature
(London, UK) 387:308
25. Oberhauser AF, Marszalek PE, Erickson HP, Fernandez JM (1998)
Nature (London, UK) 393:181
26. Marszalek PE, Lu H, Li HB, Carrion-Vazquez M, Oberhauser AF,
Schulten K, Fernandez JM (1999) Nature (London, UK) 402:100
27. Oberhauser AF, Marszalek PE, Carrion-Vazquez M, Fernandez JM
(1999) Nat. Struct. Biol. 6:1025
28. Carrion-Vazquez M, Marszalek PE, Oberhauser AF, Fernandez JM
(1999) Proc. Natl. Acad. Sci. USA. 96:11288
29. Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broe-
del SE, Clarke J, Fernandez JM (1999) Proc. Natl Acad. Sci. USA.
96:3694
30. Li HB, Oberhauser AF, Fowler SB, Clarke J, Fernandez JM (2000)
Proc. Natl Acad. Sci. USA. 97:6527
31. Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li HB,
Fernandez JM (2000) Prog. Biophys. Mol. Biol. 74:63
32. Yang GL, Cecconi C, Baase WA, Vetter IR, Breyer WA, Haack JA,
Matthews BW, Dahlquist FW, Bustamante C (2000) Proc. Natl Acad.
Sci. USA. 97:139
33. Li HB, Linke WA, Oberhauser AF, Carrion-Vazquez M, Kerkviliet JG,
Lu H, Marszalek PE, Fernandez JM (2002) Nature (London, UK)
418:998
34. Linke WA, Kulke M, Li HB, Fujita-Becker S, Neagoe C, Manstein DJ,
Gautel M, Fernandez JM (2002) J. Struct. Biol. 137:194
35. Rief M, Oesterhelt F, Heymann B, Gaub HE (1997) Science (Washing-
ton, DC, US) 275:1295
36. Marszalek PE, Oberhauser AF, Pang YP, Fernandez JM (1998) Nature
(London, UK) 396:661
37. Li HB, Rief M, Oesterhelt F, Gaub HE (1998) Adv. Mater. (Weinheim,
Germany) 10:316
38. Li HB, Rief M, Oesterhelt F, Gaub HE (1999) Appl. Phys. A 68:407
39. Li HB, Rief M, Oesterhelt F, Gaub HE, Zhang X, Shen JC (1999)
Chem. Phys. Lett. 305:197
40. Marszalek PE, Pang YP, Li HB, Yazal JE, Oberhauser AF, Fernandez
JM (1999) Proc. Natl Acad. Sci. USA. 96:7894
41. Marszalek PE, Li HB, Fernandez JM (2001) Nat. Biotechnol. 19:258
42. Xu QB, Zhang WK, Zhang X (2002) Macromolecules 35:871
43. Marszalek PE, Li HB, Oberhauser AF, Fernandez JM (2002) Proc. Natl
Acad. Sci. USA. 99:4278
44. Rief M, Calusen-Schaumann H, Gaub HE (1999) Nat. Struct. Biol.
6:346
45. Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub HE (2000) Bio-
phys. J. 78:1997
46. Xu QB, Zou S, Zhang WK, Zhang X (2001) Macromol. Rapid Com-
mun. 22:1163
47. Krautbauer R, Rief M, Gaub HE (2003) Nano Lett. 3:493
0
0
500
1,000
1,500
2,000
2,500
3,000
50 100 150 200 250 300 350
Extension (nm)
Extension/nm
Force / pN
Force (pN)
0
0
100
200
300
400
500
50 100 150 200 250 300
FIGURE 30.12. Typical force curve of PAMPS in water that
shows a long plateau with a height of about 120 pN. Repro-
duced from Macromolecules (2004) with permission from
American Chemical Society [56].
534 / CHAPTER 30