
376 Part 3 Classes of Materials
Table 3.1-218 Physical properties of some technical Pd and Pt alloys [1.231, p. 67]
Material Density Melting point (interval) Electrical conductivity Temperature coefficient Modulus of elasticity
(g/cm
3
) (
◦
C) (m/ mm
2
) of electrical resistance (10
3
K
−1
) (kN/mm
2
)
Pt(99.9) 21.45 1773 9.4 3.92 16–17
PtIr5 21.5 1774–1776 4.5 − 18.5–19.5
PtIr10 21.6 1780–1785 5.6 2.0 ca. 22
PtRu10 20.6 ca. 1800 3.0 0.83 ca. 23.5
PtNi8 19.2 1670–1710 3.3 1.5 ca. 18
PtW5 21.3 1830–1850 2.3 0.7 ca. 18.5
Pd(99.99) 12.0 1552 9.3 3.77 ca. 12.5
PdCu15 11.3 1370–1410 2.6 0.49 ca. 17.5
FdCu40 10.4 1200–1230 3.0 0.28 ca. 17.5
PdNi5 11.8 1455–1485 5.9 2.47 ca. 17.5
Table 3.1-219 Composition and melting temperature range
of selected Pd-jewellery alloys [1.217, p. 511]
Alloy Melting temperature range (
◦
C)
Pd95Cu3Ga2 1340–1400
Pd95Cu5 1400–1460
Pd95Ni5 1450–1490
Pd50Ag47.5Cu2.5 1200–1280
Platinum and Platinum Alloys
Applications. Platinum and platinum alloys are im-
portant constituents of catalysts (chemistry, automotive
exhaust gas cleaning, fuel cells), sensor materials (ther-
mocouples, resistance thermometers), strong permanent
magnet alloys, magnetic and magnetooptical (mem-
ory) devices, high temperature and corrosion resistant
structural parts, and electrical contacts and connect-
ing elements. Classical applications are jewelry and
dentistry alloys.
Commercial grades are sponge and powder in puri-
ties varying from minimum 99.9% to 99.95% (ASTM
B 561-86). High purity electronic grade is 99.99%.
Production. Platinum sponge or powder are compacted
by pressing and sintering. Melting and alloying is done
in electrical heated furnaces in Al
2
O
3
or MgO crucibles,
by vacuum arc and by electron beam melting 99.98%.
Phases and Phase Equilibria. Selected phase diagrams
are shown in Figs. 3.1-277–3.1-281 [1.219]. Thermo-
dynamic data are given in Tables 3.1-190 – 3.1-193 and
3.1-220 [1.216, 217,222]. For compositions and crys-
tal structures, see Tables 3.1-196, 3.1-219, 3.1-222,
3.1-221 [1.217, 219]. Platinum forms continuous solid
3000
2600
2200
1800
1400
1000
Pt C
C (at. %)
123 5710 2040
10 20 30 40 50 60 70 80 90
T (K) C (wt %)
16.8 (10)
1978 (13) K
2042 K
C-Pt
L + graphite
(Pt) + graphite
(Pt)
Fig. 3.1-277 Binary phase diagram Pt
−
C [1.219]
2200
2000
1800
1600
1400
1200
1000
800
600
400
200
0
Fe Pt
10
10 20 30 40 50 60 70 80 90
Pt (at. %)
30 40 50 60 70 80 85 90 95
(Fe
3
Pt) (α-Fe)
T (K) Pt (wt %)
T
c
(ordered)
T
c
(γ)
(α-Fe)
(Fe
3
Pt)
(FePt) (FePt
3
)
T
c
1043 K
1185 K
> 823 K
< 973 K
≈1573 K
≈1623 K
(γ-Fe, Pt) or γ
1667 K
(δ-Fe)
1792 K
1811 K
2042 K
Fe-Pt
Fig. 3.1-278 Binary phase diagram Pt
−
Fe (dash-dotted
line: Curie temperature) [1.219]
Part 3 1.10