
τ
1
⊗ τ
2
⊗ ··· ⊗ τ
n
= ²
1
τ
1
⊗ ²
2
τ
2
⊗ ··· ⊗ ²
n
τ
n
, ²
1
···²
1
= 1.
τ
1
⊗ τ
2
⊗ ··· ⊗ τ
n
= τ
0
1
⊗ τ
0
2
⊗ ··· ⊗ τ
0
n
,
τ
j
= ±τ
0
j
n
¤
wt(S) S ∈ E
⊗n
±τ
(0)
τ
j
wt(S)
S
wt(S)
wt(τ
1
⊗ τ
2
⊗ ··· ⊗ τ
n
) = wt(τ
0
1
⊗ τ
0
2
⊗ ··· ⊗ τ
0
n
),
τ
1
⊗ τ
2
⊗ ··· ⊗ τ
n
= τ
0
1
⊗ τ
0
2
⊗ ··· ⊗ τ
0
n
F
n
2
= {x
1
, . . . , x
2
n
}
F
n
2
T
(α)
S
(β)
α, β ∈ F
n
2
T
(α)
T
(α)
= diag
¡
(−1)
(α,x
1
)
, . . . , (−1)
(α,x
2
n
)
¢
,
S
(β)
= (s
γ,δ
) (2
n
× 2
n
)
x → x + β F
n
2
β s
γ,δ
= 1
γ = δ + β s
γ,δ
= 0
T
(α)
S
(β)
F
n
2
E
⊗n
T
(α)
=
¡
τ
(1)
¢
α
1
⊗
¡
τ
(1)
¢
α
2
⊗ ··· ⊗
¡
τ
(1)
¢
α
n
S
(β)
=
¡
τ
(3)
¢
β
1
⊗
¡
τ
(3)
¢
β
2
⊗ ··· ⊗
¡
τ
(3)
¢
β
n
T
(α)
S
(β)
= (−1)
(α,β)
S
(β)
T
(α)
,
(α, β) α β F
n
2
E
⊗n
T
(α)
S
(β)
E
⊗n
= hT
(α)
, S
(β)
|α, β ∈
F
n
2
i
S = ±T
(α)
· S
(β)
wt(S) = wt(α ∨ β) wt(γ)
γ α ∨ β = (α
1
∨ β
1
, . . . , α
n
∨ β
n
)
S = T
(α)
S
(β)
2
n
− V
e
γ
= (0, . . . , 0, 1, 0, . . . , 0), γ ∈ F
n
2
, γ
V
e
γ
S = e
γ
T
(α)
S
(β)
= (−1)
(γ,α)
e
γ+β
.