
a
(1)
a
(2)
O(d
3
+ dn)
z
j
h
Λ a ∈ F
q
\ {0}
h a
−1
B
0
= h ·B ·Λ
z
1
= 1
c
1
, c
2
, . . . , c
d
d
X
s=1
c
s
z
s
f
j
(ω
s
) = 0, j = 0, . . . , d −2.
c
1
, c
2
, . . . , c
d
B
0
d
B
00
d
· diag(z
1
, z
2
, . . . , z
d
)(c
1
, c
2
, . . . , c
d
)
T
= 0,
B
00
d
= (f
i
(ω
j
)), i = 0, 1, . . . , d − 2, j = 1, 2, . . . , d d − 1 × d
B
00
d
· diag(z
1
, z
2
, . . . , z
d
) d
B
0
B
00
d
= h · B
d
B
d
=
ω
0
1
ω
0
2
··· ω
0
d
ω
1
ω
2
··· ω
d
ω
2
1
ω
2
2
··· ω
2
d
···
ω
d−2
1
ω
d−2
2
··· ω
d−2
d
h · B
d
· ·diag(z
1
, z
2
, . . . , z
d
)(c
1
, c
2
, . . . , c
d
)
T
= 0,
B
d
· diag(c
1
, c
2
, . . . , c
d
) · (z
1
, z
2
, . . . , z
d
)
T
= 0.
z
2
, z
3
, . . . , z
d
c
1
, c
2
, . . . , c
d
ω
1
, ω
2
, . . . , ω
d
z
1
= 1
ω
0
2
ω
0
3
··· ω
0
d
ω
2
ω
3
··· ω
d
ω
2
2
ω
2
3
··· ω
2
d
···
ω
d−2
2
ω
d−2
3
··· ω
d−2
d
· diag(c
2
, c
3
, . . . , c
d
)