
682 17 Regression for Binary and Count Data
model
{
for (i in 1:n)
{
y[i] ~ dpois(lambda[i] )
log( lambda[i]) <- beta.0 + beta.1
*
x[i]
}
beta.0 ~ dnorm(0, 0.0001)
beta.1 ~ dnorm(0, 0.0001)
lambda.C <- exp(beta.0)
lambda.E <- exp(beta.0 + beta.1 )
diff <- lambda.E - lambda.C
meffect <- exp( beta.1 )
}
DATA
list( y = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
...
2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
...
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 5, 6 ),
x = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1 ), n = 572 )
INITS
list( beta.0 = 0.0, beta.1 = 0.0 )
mean sd MC error val2.5pc median val97.5pc start sample
beta.0 -0.05915 0.06093 2.279E-4 -0.1801 -0.05861 0.05881 1001 100000
beta.1 -0.2072 0.09096 3.374E-4 -0.3861 -0.2071 -0.02923 1001 100000
deviance 1498.0 2.012 0.006664 1496.0 1498.0 1504.0 1001 100000
diff -0.1764 0.07737 2.872E-4 -0.3285 -0.1763 -0.02493 1001 100000
lambda.C 0.9443 0.05749 2.137E-4 0.8352 0.9431 1.061 1001 100000
lambda.T 0.7679 0.05188 1.784E-4 0.6693 0.7668 0.8732 1001 100000
meffect 0.8162 0.07437 2.76E-4 0.6797 0.8129 0.9712 1001 100000