
December 28, 2009 12:15 WSPC - Proceedings Trim Size: 9in x 6in recent
168
lim
n→+∞
lim
σ→0
D
σ
n
≤ 0. (87)
Proof of Lemma 4.1. The lemma is proved in .
23
In view of estimates (82), (83), (84), (85), (86) and (87) we have
Z
Q
b(x, u
1
) − b(x, u
2
)
+
dx dt ≤ 0,
so that b(x, u
1
) ≤ b(x, u
2
) a.e. in Q which in turn implies that u
1
≤ u
2
a.e.
in Q, theorem 4.1 will be then established.
References
1. P. B
´
enilan, L. Boccardo, T. Gallou
¨
et, R. Gariepy, M. Pierre and J.-L.
Vazquez, An L
1
-theory of existence and uniqueness of solutions of nonlinear
elliptic equations, Ann. Scuola Norm. Sup. Pisa, 22, (1995), 241-273.
2. D. Blanchard, Truncation and monotonicity methods for parabolic equa-
tions equations, Nonlinear Anal., 21, (1993), 725-743.
3. D. Blanchard, and F. Murat, Renormalized solutions of nonlinear parabolic
problems with L
1
data, Existence and uniqueness, Proc. Roy. Soc. Edinburgh
Sect., A 127, (1997), 1137-1152.
4. D. Blanchard, F. Murat and H. Redwane, Existence et unicit´e de la so-
lution reormalis´ee d’un probl`eme parabolique assez g´en´eral, C. R. Acad. Sci.
Paris S´er., I329, (1999), 575-580.
5. D. Blanchard, F. Murat and H. Redwane, Existence and Uniqueness of
a Renormalized Solution for a Fairly General Class of Nonlinear Parabolic
Problems, J. Differential Equations, 177, (2001), 331-374.
6. D. Blanchard and A. Porretta, A Stefan problems with nonlinear diffu-
sion and convection, J. Diff. Equations, 210, (2005), 383-428.
7. D. Blanchard and H. Redwane, Renormalized solutions of nonlinear
parabolic evolution problems, J. Math. Pure Appl., 77, (1998), 117-151.
8. L. Boccardo, D. Giachetti, J.-I. Diaz and F. Murat, Existence and regu-
larity of renormalized solutions for some elliptic problems involving derivation
of nonlinear terms, J. Differential Equations, 106, (1993), 215-237.
9. L. Boccardo, F. Murat and J.-P. Puel, Existence of bounded solutions for
nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152, (1988),
183-196.
10. J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ra-
tion. Mech. Anal., 147(4), (1999), 269-361.
11. J. Carrillo and P. Wittbold, Uniqueness of renormalized solutions of de-
generate elliptic-parabolic problems, J. Differential Equations, 156, (1999),
93-121.
12. J. Carrillo and P. Wittbold, Renormalized entropy solution of a scalar
conservation law with boundary condition, J. Differential Equations, 185(1),
(2002), 137-160.