December 28, 2009 12:15 WSPC - Proceedings Trim Size: 9in x 6in recent
354
ii) For, 1 ≤ q < p < ∞,
λ < p − 1,
µ
q
−
λ
p
+
1
q
−
1
p
+ 1 > 0. (32)
Remark 3.4. Condition (31) or (32) are sufficient for the compact imbed-
ding (7) to hold (see for example
7
Example 1,
8
Example 1.5, p.34 and
10
theorem 19.17 and 19.22).
Finally, the hypotheses of theorem 3.1 are satisfied, therefore the problem
(P) has at least one solution.
References
1. Y. Akdim, E. Azroul and A. Benkirane, Existence of Solution for
Quasilinear Degenerated Elliptic Equations, Electronic J. Diff. Equ.,
Vol. 2001 N 71, (2001) pp 1-19.
2. Y. Akdim, E. Azroul and A. Benkirane, Existence of Solution
for Quasilinear Degenerated Elliptic Unilateral Problems, Annale
Math´ematique Blaise Pascal Vol. 10 (2003) pp 1-20.
3. Y. Akdim, E. Azroul and A. Benkirane, Existence results for Quasi-
linear Degenerated equation via strong convergence of trancations, Re-
vista Matematica Complutense , Vol.17 (2004), pp 359-379..
4. A. Bensoussan, L. Boccardo and F. Murat, On a non linear par-
tial differential equation having natural growth terms and unbounded
solution, Ann. Inst. Henri Poincar´e 5 N 4 (1988), 347-364.
5. L. Boccardo and T. Gallou
¨
et, Strongly MonlinearElliptic Equa-
tions Having Natural Growth Terms and L
1
Data,Nonlinear Analysis
Theory Methods and Applications, Vol 19, N 6 (1992) 573-579.
6. L. Boccardo, T. Gallou
¨
et and F. Murat, A unified presentation
of two existence results for problems with natural growth,in Progress in
PDE, the Metz surveys 2, M. Chipot editor, Research in Mathematics,
Longman, 296 (1993), 127-137.
7. P. Drabek, A. Kufner and V. Mustonen, Pseudo-monotonicity and
degenerated or singular elliptic operators, Bull. Austral. Math. Soc.
Vol. 58 (1998), 213-221.
8. P. Drabek, A. Kufner and F. Nicolosi, Non linear elliptic equations,
singular and degenerate cases, University of West Bohemia, (1996).
9. P. Drabek and F. Nicolosi, Existence of Bounded Solutions for Some
Degenerated Quasilinear Elliptic Equations, Annali di Mathematica
pura ed applicata (IV), Vol. CLXV (1993), pp. 217-238.
10. B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research
Notes in Mathematics Series 219(Longman Scientific and Technical,
Harlow, 1990).