
258 Understanding Calculus
EXAMPLE
41.4
Let P(x, y) = x + y. Calculatef
eP(x,
y) dx for parameterizations (41.6) and (41.8) of the parabolicarc
from(0, 0) to (1, 1).Thenparameterize the samearc in the oppositedirection,call that
-C,
and evaluate
f_eP(x,y)
dx.
Solution
Forthe parameterization (41.6), we have
1(x +y) dx = I
\t
+ tl) dt
c 0
=
..!-tl
+
..!-
t3]1
2 3 0
115
=2+3=6·
Fortheparameterization
(41.8)
weget
1
1
7T/2
(x + y) dx = (sin t + sirr' t)(cos t) dt
C 0
1 1
]7T/2
= - sin
2
t + - sin
3
t
2 3 0
115
=-+-=-
2 3
6·
Hence
Wecan parameterize
-C
for instanceby
x=I-t,
y=(I-t)2,
o-s t -s 1.
J
(x+y)dx=
f[1-t+(I-t)2](-dt)
-c
0
=f
HI
- t) - (1 - t)2]dt
1 2 1
3]1
1 1 5
=
-(I-t)
+ -
(I-t)
=--
- -
=--
2 3 0 2 3
6·
PROBLEMS
Findthe integralfeF . ds for the givenfunctionF and the givencurve C.
41.1 F(x, y) = y i + x j; C is the segmentfrom (0, 0) to (1, 1).
41.2
F(x,y)=(x+y)j;
Cis
the segmentfrom (0,
l)to(I,O).
41.3
F(x,y)
= i - j; C is the arc of the parabolay
=x
2
from
(-1,1)
to (1,1).
41.4 F(x, y) =(x +y) i +(x - y) j; x =tl,y =t + 1, 1 -s t -s 2.
Evaluatethe line integrals.
41.5 f
e
(x
+y)2 dx; C is the segmentfrom (1, 1) to (3, 1).
41.6 feXY dy; C is the segmentfrom (1,0) to (1, 1).
41.7
fex
dy; C is the boundaryof the rectangle, {(x, y) : 0 -s x :s; 2, 0 -sy -s I}, traced out
counterclockwise; i.e., C consistsof the four segments: (0, 0) to (2, 0), (2, 0) to (2, 1), (2,
1)
to (0, 1), and (0, 1) to (0, 0).
41.8
feY
dx; C is the boundary of the top half of the unit circle, traced out counterclockwise,
i.e., C consists of the segmentfrom (-1, 0) to (1, 0), followed by the top half of the unit
circle from (1, 0) to (-1, 0).