
128 19 About the Quantum Fields Theory
The only explanation of the presence of c in the right hand part of Eq. 19.3 is
the following.
This presence corresponds to the construction.
1
R
=
π
2
×
1
R
×
2
π
(19.5)
then
π
2
=
∞
0
sin x
x
dx =
∞
0
sin(k
R)
k
dk
Denoting k
= k/c
π
2
=
∞
0
sin(kR/c)
k
dk
(19.6)
and using
sin(k
R)
k
R
=
1
2
π
0
e
ik
R cos θ
sin θdθ =
1
4π
π
0
2π
e
i(k
.R)
d
one deduces
1
R
=
⎡
⎣
1
4π
∞
0
π
0
2π
0
e
i(k
.R)
dk
d
⎤
⎦
×
2
π
=
1
2π
2
c
e
i((k.R)/c)
d
3
k
k
2
that is the formula Eq. 19.3.
One sees on Eqs. 19.5, 19.6 that the Planck constant is introduced inside π/2
(not inside 2/π ), an indisputable nonsense!
Nevertheless the use of such a device does not alter the validity of the calculation
of the Lamb shift which remains one of the most admirable work in the theory of the
electron.
References
1. W. Heitler, The Quantum Theory of Radiation (Clarendon Press, Oxford, 1964)
2. D. Hestenes, J. Math. Phys. 8, 798 (1967)
3. J. Seke, Mod. Phys. Lett. B 7, 1287 (1993)
4. G. Jakobi, G. Lochak, C.R. Ac. Sc. (Paris) 243, 234 (1956)
5. R. Boudet, New Frontiers in Quantum Electrodynamics and Quantum, ed. by A. O. Barut
(Plenum, New York, 1990), p. 443
6. M. Kroll, W. Lamb, Phys. Rev. 75, 388 (1949)