90 Fiser
  39.  Moretti,  S.,  Armougom,  F.,  Wallace,  I.M., 
Higgins,  D.G.,  Jongeneel,  C.V.,  and 
Notredame,  C.  (2007)  The  M-Coffee  web 
server: a meta-method for computing multi-
ple sequence alignments by combining alter-
native alignment methods. Nucleic Acids Res, 
35, W645–W648.
  40.  Pei, J., Kim, B.H., and Grishin, N.V. (2008) 
PROMALS3D:  a  tool  for  multiple  protein 
sequence and  structure  alignments.  Nucleic 
Acids Res, 36, 2295–2300.
  41.  Pei, J. and Grishin, N.V. (2007) PROMALS: 
towards  accurate  multiple  sequence  align-
ments  of  distantly  related  proteins. 
Bioinformatics, 23, 802–808.
  42.  Do,  C.B.,  Mahabhashyam,  M.S.,  Brudno, 
M.,  and  Batzoglou,  S.  (2005)  ProbCons: 
probabilistic  consistency-based  multiple 
sequence alignment. Genome Res, 15, 330.
  43.  Jones,  D.T.  (1999)  GenTHREADER:  an 
efficient and reliable protein fold recognition 
method for  genomic sequences. J Mol  Biol, 
287, 797.
  44.  Finkelstein,  A.V.  and  Reva,  B.A.  (1991)  A 
search  for  the  most  stable  folds  of  protein 
chains. Nature, 351, 497.
  45.  Bowie,  J.U.,  Luthy,  R.,  and  Eisenberg,  D. 
(1991)  A  method  to  identify  protein 
sequences  that  fold  into  a  known  three-
dimensional structure. Science, 253, 164.
  46.  Sippl, M.J. (1995) Knowledge-based poten-
tials  for  proteins.  Curr  Opin  Struct  Biol,  
5, 229.
  47.  Shi,  J.,  Blundell,  T.L.,  and  Mizuguchi,  K. 
(2001) FUGUE: sequence–structure homol-
ogy  recognition  using  environment-specific 
substitution tables  and  structure-dependent 
gap penalties. J Mol Biol, 310, 243.
  48.  Felsenstein,  J.  (1981)  Evolutionary  trees 
from DNA sequences: a maximum likelihood 
approach. J Mol Evol, 17, 368.
  49.  Venclovas, C. and Margelevicius, M. (2005) 
Comparative modeling in CASP6 using con-
sensus  approach  to  template  selection, 
sequence–structure alignment, and structure 
assessment. Proteins, 61, 99–105.
  50.  Sanchez, R. and Sali, A. (1997) Evaluation of 
comparative  protein  structure  modeling  by 
MODELLER-3. Proteins, 1 Suppl, 50.
  51.  Eisenberg,  D.,  Luthy,  R.,  and  Bowie,  J.U. 
(1997)  VERIFY3D:  assessment  of  protein 
models  with  three-dimensional  profiles. 
Methods Enzymol, 277, 396.
  52.  Wu, G., McArthur, A.G., Fiser, A., Sali, A., 
Sogin, M.L., and Mllerm,  M.  (2000)  Core 
histones  of  the  amitochondriate  protist, 
Giardia lamblia. Mol Biol Evol, 17, 1156.
  53.  Jennings,  A.J., Edge, C.M., and Sternberg, 
M.J. (2001) An approach to improving mul-
tiple alignments of protein  sequences  using 
predicted secondary structure.  Protein  Eng, 
14, 227.
  54.  Blake, J.D. and Cohen, F.E. (2001) Pairwise 
sequence alignment below the twilight zone. 
J Mol Biol, 307, 721.
  55.  Petrey,  D.,  Xiang,  Z.,  Tang,  C.L.,  Xie,  L., 
Gimpelev,  M.,  Mitros,  T.,  Soto,  C.S., 
Goldsmith-Fischman,  S.,  Kernytsky,  A., 
Schlessinger, A., et al. (2003) Using multiple 
structure  alignments,  fast  model  building, 
and energetic analysis in fold recognition and 
homology modeling. Proteins, 53  Suppl  6, 
430.
  56.  Al  Lazikani,  B.,  Sheinerman,  F.B.,  and 
Honig, B. (2001) Combining multiple struc-
ture  and  sequence  alignments  to  improve 
sequence  detection  and  alignment:  applica-
tion  to  the  SH2  domains  of  Janus  kinases. 
Proc Natl Acad Sci U S A, 98, 14796.
  57.  Reddy, B.V., Li, W.W., Shindyalov, I.N., and 
Bourne,  P.E.  (2001)  Conserved  key  amino 
acid  positions  (CKAAPs)  derived  from  the 
analysis  of  common  substructures  in  pro-
teins. Proteins, 42, 148.
  58.  Jaroszewski, L., Rychlewski, L., and Godzik, 
A. (2000) Improving the quality of twilight-
zone alignments. Protein Sci, 9, 1487.
  59.  Rai, B.K. and Fiser, A. (2006) Multiple map-
ping  method:  a  novel  approach  to  the 
sequence-to-structure alignment problem in 
comparative  protein  structure  modeling. 
Proteins, 63, 644–661.
  60.  Henikoff,  S.  and  Henikoff,  J.G.  (1992) 
Amino acid substitution matrices from pro-
tein blocks. Proc  Natl  Acad  Sci U S A, 89, 
10915–10919.
  61.  Luthy, R., McLachlan, A.D., and Eisenberg, 
D.  (1991)  Secondary  structure-based  pro-
files:  use  of  structure-conserving  scoring 
tables  in  searching  protein  sequence  data-
bases for structural similarities. Proteins, 10, 
229–239.
  62.  Rykunov, D. and Fiser, A. (2007) Effects of 
amino  acid  composition,  finite  size  of  pro-
teins, and sparse statistics on distance-depen-
dent  statistical  pair  potentials.  Proteins,  67, 
559–568.
  63.  Blundell,  T.L.,  Sibanda,  B.L.,  Sternberg, 
M.J., and Thornton, J.M. (1987) Knowledge-
based  prediction  of  protein  structures  and 
the  design  of  novel  molecules.  Nature,  
326, 347.
  64.  Browne, W.J., North, A.C.T., Phillips, D.C., 
Brew,  K.,  Vanaman,  T.C.,  and  Hill,  R.C.