281
Reverse Engineering Gene Regulatory Networks
Reinders,  M.  J.  T.  (2006)  Least  absolute 
regression network analysis of the murine oster-
blast  differentiation  network.  Bioinformatics, 
22, 477–484.
 16  Grandvalet, Y. and Canu, S. (1998) Outcomes 
of the equivalence of adaptive ridge with least 
absolute shrinkage. In Kearns, M., Solla, S.A. 
and  Cohn,  D.A.  (eds.),  Advances  in  Neural 
Information  Processing  Systems  11,  pp.  445–
451. MIT Press, Cambridge
 17  MacKay,  D.  J.  C.  (1996)  Hyperparameters: 
optimize, or integrate out. In Heidbreder, G. 
(ed.), Maximum Entropy and Bayesian Methods, 
pp. 43–59. Kluwer Academic Publisher, Santa 
Barbara.
 18  MacKay, D. J. C. (1992) Bayesian interpola-
tion. Neural Computation, 4, 415–447.
 19  Rogers,  S.  and  Girolami,  M.  (2005)  A 
Bayesian regression approach to the inference 
of regulatory networks from gene expression 
data. Bioinformatics, 21, 3131–3137.
 20  Tipping,  M.  and  Faul,  A.  (2003)  Fast  mar-
ginal  likelihood  maximisation  for  sparse 
Bayesian models. In M., B. C. and J., F. B. 
(eds.),  Proceedings  of  the  International 
Workshop  on  Artificial  Intelligence  and 
Statistics, volume 9.
 21  Friedman,  N.,  Linial,  M.,  Nachman,  I.  and 
Pe’er, D. (2000) Using Bayesian networks to 
analyze  expression  data.  Journal  of 
Computational Biology, 7, 601–620.
 22  Hartemink, A. J., Gifford, D. K., Jaakkola, T. 
S. and Young, R. A. (2001) Using graphical 
models and genomic expression data to statis-
tically  validate  models  of  genetic  regulatory 
networks. Pacific Symposium on Biocomputing, 
6, 422–433.
 23  Husmeier, D., Dybowski, R. and Roberts, S. 
(2005)  Probabilistic  Modeling  in 
Bioinformatics  and  Medical  Informatics. 
Advanced  Information  and  Knowledge 
Processing. Springer, New York.
 24  Heckerman, D. (1999) A tutorial on learning 
with  Bayesian  networks.  In  Jordan,  M.  I. 
(ed.), Learning in Graphical Models, Adaptive 
Computation  and  Machine  Learning,  pp. 
301–354.  MIT  Press,  Cambridge, 
Massachusetts.
 25  Grzegorczyk, M., Husmeier, D. and Werhli, 
A.  (2008)  Reverse  engineering  gene  regula-
tory networks with various machine learning 
methods. In Emmert-Streib, F. and Dehmer, 
M.  (eds.),  Analysis  of  Microarray  Data:  A 
Network-Based Approach, pp. 101–142. Wiley-
VCH, Weinheim.
 26  Geiger,  D.  and  Heckerman,  D.  (1994) 
Learning Gaussian networks. In Proceedings of 
the  Tenth  Conference  on  Uncertainty  in 
Artificial Intelligence, pp. 235–243. Morgan 
Kaufmann, San Francisco, CA.
 27  Madigan,  D.  and  York,  J.  (1995)  Bayesian 
graphical  models  for  discrete  data. 
International  Statistical  Review,  63, 
215–232.
 28  Friedman,  N.  and  Koller,  D.  (2003)  Being 
Bayesian  about  network  structure.  Machine 
Learning, 50, 95–126.
 29  Grzegorczyk,  M.  and  Husmeier,  D.  (2008) 
Improving the structure MCMC sampler for 
Bayesian networks by introducing a new edge 
reversal  move.  Machine  Learning,  71, 
265–305.
 30  Markowetz, F., Bloch, J. and Spang, R. (2005) 
Non-transcriptional  pathway  features  recon-
structed from secondary effects of RNA inter-
ference. Bioinformatics, 21, 4026–4032.
 31  Fröhlich,  H.,  Fellmann,  M.,  Sultmann,  H., 
Poustka,  A.  and  Beissbarth,  T.  (2008) 
Estimating  large  scale  signaling  networks 
through nested effect models  with interven-
tion  effects  from  microarray  data. 
Bioinformatics, 24, 2650–2656.
 32  Markowetz, F., Kostka, D., Troyanskaya, O. 
and Spang, R. (2007) Nested effects models 
for  highdimensional  phenotyping  screens. 
Bioinformatics, 23, i305–i312.
 33  Fröhlich,  H.,  Tresch,  A.  and  Beissbarth,  T. 
(2009) Nested effects models for learning sig-
naling  networks  from  perturbation  data. 
Biometrical Journal, 51, 304–323.
 34  Margaritis, D. (2003) Learning Bayesian net-
work model structure from data. Ph.D. thesis, 
School  of  Computer  Science,  Carnegie-
Mellon University.
 35  Bishop,  C.  M.  (1995)  Neural  Networks  for 
Pattern Recognition. Oxford University Press, 
New York, ISBN 0-19-853864-2.
 36  Guelzim,  N.,  Bottani,  S.,  Bourgine,  P.  and 
Kepes,  F.  (2002)  Topological  and  causal 
structure  of  the  yeast  transcriptional  regula-
tory network. Nature Genetics, 31, 60–63.
 37  Battiti, R. and Colla, A. M. (1994) Democracy 
in  neural  nets:  voting  schemes  for  classifica-
tion. Neural Networks, 7, 691–707.