394 Charged Particle and Photon Interactions with Matter
Cocke,
C. L. and Olson, R. E. 1991. Recoil ions. Phys. Rep. 205: 153–219.
Curie,
P. and Debierne, A. 1901. Sur la radio-activité induite et les gaz activés par la radium. Comptes Rendus
Acad. Sci. Paris
132: 768–770.
Curtis,
S. B., Schilling, W. A., Tenforde, T. S., Crabtree, K. E., Tenforde, S. D., Howard, J., and Lyman, J. T.
1982. Survival of oxygenated and hypoxic tumor cells in the extended-peak regions of heavy charged-
particle
beams. Radiat. Res. 90: 292–309.
Debierne,
A. 1914. Recherches sur les gaz produits par les substances radioactives. Décomposition de l’eau.
Ann. Phys. (Paris)
2: 97–127.
Dingfelder,
M. 2006. Track structure: Time evolution from physics to chemistry. Radiat. Prot. Dosim.
122: 16–21.
Dingfelder, M., Inokuti, M., and Paretzke, H. G. 2000. Inelastic-collision cross sections of liquid water for
interactions
of energetic protons. Radiat. Phys. Chem. 59: 255–275.
Donaldson,
D. M. and Miller, N. 1956. The action of α-particles on solutions containing ferrous and cupric
ions.
Trans. Faraday Soc. 52: 652–659.
Draganic´,
I. G. and Draganic´, Z. D. 1971. The Radiation Chemistry of Water. New
York: Academic
Press.
Duane,
W. and Scheuer, O. 1913. Recherches sur la décomposition de l’eau par les rayons α. Le Radium (Paris)
10:
33–46.
Elliot,
A. J., Chenier, M. P., Ouellette, D. C., and Koslowsky, V. T. 1996. Temperature dependence of g values
for aqueous solutions irradiated with 23MeV
2
H
+
and 157 MeV
7
Li
3+
ion beams. J. Phys. Chem. 100:
9014–9020.
Evans,
R. D. 1955. The Atomic Nucleus. Malabar, FL: Krieger Publishing Company.
Ewing,
D. 1998.
The
oxygen xation hypothesis:
A
reevaluation. Am. J. Clin. Oncol. 21: 355–361.
Faraggi,
M. and Désalos, J. 1969. Effect of positively charged ions on the “molecular” hydrogen yield in the
radiolysis
of aqueous solutions. Int. J. Radiat. Phys. Chem. 1: 335–344.
Ferradini,
C. 1979.
Actions
chimiques des radiations ionisantes. J. Phys. Chim. 76: 636–644.
Ferradini,
C. and Jay-Gerin, J.-P. 1990. Hypothesis of a possible chemical fate for the incompletely relaxed
electron
in water and alcohols. Chem. Phys. Lett. 167: 371–373.
Ferradini,
C. and Jay-Gerin, J.-P. 1998. Does multiple ionization intervene for the production of
radicals
in
high-LET liquid water radiolysis? Radiat. Phys. Chem. 51: 263–267.
Ferradini,
C. and Jay-Gerin, J.-P. 1999. La radiolyse de l’eau et des solutions aqueuses: historique et actualité.
Can. J. Chem.
77: 1542–1575.
Ferradini,
C. and Jay-Gerin, J.-P. 2000. The effect of pH on water radiolysis: A still open question. A minire-
view.
Res. Chem. Intermed. 26: 549–565.
Franck,
J. and Rabinowitsch, E. 1934. Some remarks about free radicals and the photochemistry of solutions.
Trans. Faraday Soc.
30: 120–131.
Freeman,
G. R. 1987. Ionization and charge separation in irradiated materials. In Kinetics of Nonhomogeneous
Processes,
G. R. Freeman (ed.), pp. 19–87. New
York: Wiley.
Frongillo, Y., Fraser, M.-J., Cobut, V., Goulet, T., Jay-Gerin, J.-P., and Patau, J. P. 1996. Évolution des
espèces produites par le ralentissement de protons rapides dans l’eau liquide: Simulation fondée sur
l’approximation
des temps de réaction indépendants. J. Chim. Phys. 93: 93–102.
Frongillo,
Y., Goulet, T., Fraser, M.-J., Jay-Gerin, J.-P., Cobut, V., and Patau, J. P. 1997. The effect of the radia-
tion LET on the production of HO
2
radicals in irradiated liquid water: A Monte Carlo simulation study.
In Paper Presented at the 45th Annual Meeting of the Radiation Research Society, Providence, RI (Book
of Abstracts,
p. 81).
Frongillo,
Y., Goulet, T., Fraser, M.-J., Cobut, V., Patau, J. P., and Jay-Gerin, J.-P. 1998. Monte Carlo simulation
of fast electron and proton tracks in liquid water. II. Nonhomogeneous chemistry. Radiat. Phys. Chem.
51:
245–254.
Gaigeot,
M. P., Vuilleumier, R., Stia, C., Galassi, M. E., Rivarola, R., Gervais, B., and Politis, M. F. 2007.
A multi-scale ab initio theoretical study of the production of free radicals in swift ion tracks in liquid
water.
J. Phys. B: At. Mol. Opt. Phys. 40: 1–12.
Ganguly,
A. K. and Magee, J. L. 1956. Theory of radiation chemistry. III. Radical reaction mechanism in the
tracks
of ionizing radiations. J. Chem. Phys. 25: 129–134.
Gardès-Albert,
M., Jore, D., Abedinzadeh, Z., Rouscilles, A., Deycard, S., and Bouffard, S. 1996. Réduction
du tétranitrométhane par les espèces primaires formées lors de la radiolyse de l’eau par des ions lourds
Ar
18+
. J. Chim. Phys. 93: 103–110.
Garrett, B. C., Dixon, D. A., Camaioni, D. M., Chipman, D. M., Johnson, M. A., Jonah, C. D., Kimmel, G. A.,
Miller, J. H., Rescigno, T. N., Rossky, P. J., Xantheas, S. S., Colson, S. D., Laufer, A. H., Ray, D., Barbara, P.
F., Bartels, D. M., Becker, K. H., Bowen, K. H., Jr., Bradforth, S. E., Carmichael, I., Coe, J.V., Corrales, L. R.,