
329 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
M.  Gugat  and  G.  Leugering,  Global  boundary  controllability  of  the  de 
St.Venant equations between  steady states, 
Ann. I. 
H. 
Poincare‘, Analyse 
Non Line‘aire 
20, 
1 
(2003). 
J.-M. 
Coron, B.  d’Andrka-Novel and 
G. 
Bastin, A Lyapunov  approach to 
control  irrigation canals  modeled  by  Saint-Venant  equations,  in  CD-Rom 
Proceedings, Paper 
F1008-5, 
ECC99, Karlsruhe, Germany, 
(1999). 
J. 
de Halleux, 
B. 
d’Andr6a-Nove1, J.-M. Coron and 
G. 
Bastin, A Lyapunov 
approach for the control of  multi reach channels modelled  by Saint-Venant 
equations,  in  CD-Rom  Proceedings,  NOLCOS’Ol,  St-Petersburg, Russia, 
June 
2001, 1515 (2001). 
J. 
de Halleux  and 
G. 
Bastin, Stabilization of  Saint-Venant  equations using 
Riemann invariants:  Application to waterways with mobile spillways, in CD- 
Rom Proceedings, Barcelona, Spain, July 
(2002). 
J. 
de Halleux, 
C. 
Prieur, J.-M. Coron, B.  d’Andrka-Novel and 
G. 
Bastin 
Boundary feedback control in networks of  open channels, Preprint, 
(2002). 
J.-L. Lions, Contr8labilitk Exacte, Perturbations et Stabilisation de Systkmes 
Distribugs, Vol. 
I, 
Masson, 
(1988). 
D. L. Russell, Controllability  and stabilizability  theory for linear partial dif- 
ferential equations, Recent progress and open questions, 
SIAM 
Rev. 
20, 
639 
(1978). 
E. 
Zuazua, Exact controllability for the semilinear wave equation, 
J. 
Math. 
Pures et Appl. 
69, 
1 
(1990). 
I. Lasiecka and 
R. 
Triggiani, Exact controllability of  semilinear abstract sys- 
tems with applications to waves and plates boundary control problems, 
Appl. 
Math. Optim. 
23, 
109 (1991). 
M.  Cirini, Boundary controllability of  nonlinear  hyperbolic  systems, 
SIAM 
J. 
Control  Opt. 
7, 
198 (1969). 
M. Cirini, Nonlinear hyperbolic problems with solutions on preassigned sets, 
Michigan Math. 
J. 
17, 
193 (1970). 
T. 
T. 
LI, Exact boundary controllability  of  unsteady flows in 
a 
network 
of 
open canals, to appear in Mathematische Nachrichten. 
T. T. 
LI and 
Y. 
JIN, Semi-glabal 
C1 
solution to the mixed  initial-boundary 
value problem  for  quasilinear  hyperbolic  systems, 
Chin. Ann. Math. 
22B, 
325 (2001). 
T. 
T. 
LI, B. 
P. 
Rao and 
Y. 
JIN, Solution 
C1 
semi-globale  et contrdabilit6 
exacte frontikre de systkmes hyperboliques quasi linkaires, 
C. 
R. 
Acad. Sci. 
Paris, 
t. 
333 
Skrie 
I, 
219 (2001). 
T. 
T. 
LI and B. 
P. 
Rao, Exact boundary controllability  for quasilinear  hy- 
perbolic systems, 
SIAM 
J. 
Control  Optim. 
41, 
1748 (2003). 
T. 
T. 
LI and B. P. 
Raq 
Local exact boundary controllability  for 
a 
class of 
quasilinear hyperbolic systems, 
Chin. Ann: Math. 
23B, 
209 (2002). 
19. 
T. T. 
LI, Exact controllability for quasilinear hyperbolic systems and its ap- 
plication to unsteady flows in 
a 
network 
of 
open canals, 
to 
appear in Math- 
ematical Methods in the Applied Sciences.