
ψ
1−2
=
n−1
k=1
β
1n
β
2k
− β
2n
β
1k
x
k
− β
2n
ϕ
1
(x
1
,...,x
n−2
)=0.
x
n−1
=
1
B
n−2
k=1
β
1n
β
2k
− β
2n
β
1k
x
k
−
β
2n
B
ϕ
1
˙x
j
(t)=f
j
(x
1
,...,x
j
)+a
j
x
j+1
,j=1, 2,...,n−3;
˙x
n−2
(t)=f
n−2
(x
1
,...,x
n−2
)+
a
n−1
B
n−2
k=1
β
1n
β
2k
− β
2n
β
1k
x
k
−
β
2n
a
n−1
B
ϕ
1
,
ψ
1−2
ψ
µ1
=
n−2
k=1
γ
1k
x
k
+ ϕ
2
(x
1
,...,x
n−3
)=0,
..........................................,
ψ
µ,n−3
= γ
n−3,1
x
1
+ γ
n−3,2
x
2
+ ϕ
n−1
(x
1
)=0
ϕ
1
(x
1
,...,x
n−2
)
ϕ
2
(x
1
,...,x
n−3
)
ϕ
n−1
(x
1
)
ϕ
n−1
,...,ϕ
1
u
n−1
(x
1
,...,x
n
)
u
s
(x
1
,...,x
n
)
ψ
s
=0
ϕ
1
(x
1
,...,x
n−2
),...,ϕ
n−1
(x
1
)
ϕ
µ1
=0 ϕ
µ2
=0