
O}nr'l  ilada-n  Darrrar  Crralam  Anahraia
ttv.l 
rvruuErrr  r  VYYEr 
\)yolgltr 
nrrqryoro
t
P3 
= 
0.12 
pu
Qor= 
- 
0'96 
Pu
Power 
residuals as 
per Eq. 
(6.61) 
are
- 
rt  (calcu
(- 
0.23) 
= 
0.73
Aror- 
-1.5 - 
(0.12) 
= 
- 
!.62
tQT= 
1 
- 
(- 
o'e6) 
- 
t'e6
The changes 
in variables at the end of the first iteration are obtained 
as follows:
0P,  0P,  0P,
06,  061  alv2l
0P, 
aP,  7Pu
06,  061, 
0lv2l
aQ,  }Qz  aQ,
06,  06:' 
'av|
Jacobian 
elements can be evaluated 
by differentiating the expressions 
given
above 
fr>r 
Pr, Py 
Qz 
with respectto 
6r, 
d1 
and 
lVrl and substituting 
the 
given
and 
assumed values at the start of 
iteraticln. The  chanses 
in  variables are
obtained 
as
Load 
Ftow 
Studies 
i  zzr
ti^--i.
Sz=0.5+j1.00 
| 
-
Sr=-1.5-j0.15
Transmission 
loss 
= 
0.031
Line 
flows
The
The
the 
real 
part 
of 
line 
flows
0.1913r2E00 
0.839861E'00-l
0.0 
0.6s4697 
E00 
|
-0.673847 
E00 
0.0 
J
the 
imaginary 
part 
of 
line 
flows
-0.5994&E00 
_0.r9178zE00]
0.0 
0.39604s800 
I
-0.37sr6s800 
0.0 
I
Rectangular 
Power-Mismatch 
Version
This 
version 
uses 
e, 
ancl 
.f 
,the 
rear 
ancr 
imaginary 
parts 
of 
the 
v.ltages
resllectivcly, 
as 
variables' 
'fhe 
number 
of 
equations 
and 
variables 
is greater
than 
thart 
tirr 
Eq. 
(6.6r), 
by 
the 
nurnber 
<tt 
pi 
buses. 
Since 
at 
pv 
buses 
e,and
.f; 
can 
vary 
but 
,,' 
+.f,' 
- 
lviP, 
a 
voltage-magnitude 
squarecl 
misn-latch 
equation
is 
required 
tbr 
each 
PV 
bus. 
with 
sparsity 
programming, 
this 
increase 
in 
order
is 
of 
hardly 
any 
significance. 
Indeed 
each 
iteration 
is 
rnarginally 
faster 
than 
for
Eq' 
(6'67) 
since 
there 
are 
no 
time-consunring 
sine 
ancl 
cosine 
terms. 
It 
nray,
however, 
be 
noted 
that 
even 
the polar 
version 
avoids 
these 
as 
far 
as possible
9f 
using 
rectangular 
arirhemetic 
in 
constructing 
Eqs (6.64) 
and (6.65).
However' 
thc 
rcct:tttgtrlltr 
vcrsion 
sccnls 
to 
bc 
slighiiy 
t.r, 
rcliable 
but 
faster 
in
convergence 
than 
the polar 
version.
The 
total 
number 
of 
non-linear 
power 
flow 
equations 
considered 
in 
this 
case
arc 
fixed 
iurd 
cqual 
2 
(trl). 
These 
lbllow 
fr.o'i 
Eqs. 
(6.26a) 
and (6.26b) 
and
are
following 
matrix 
shows
I 
oo
I-0.r8422eE00
L-0.826213^800
following 
matrix 
shows
I 
o.o
I
l|0.60s274800
L0.224742E00
Itdjll-24.4i 
-t2.23 
s.64-1-r[0.i3f 
[-0.023-1
|  ^r I  |  .^^^  ^^-l  |  -^l  |  ^^.-.1
I 
Aai 
l:l- 
t/..25  /.4.e) 
-J.u)l 
| 
- 
t.ozl:l-u.uo)4 
|
[nrv,r'-] 
L-uu 
3.0s 
zz.s4) 
L 
r.qol 
I 
ooarl
la)l  Iai-l l-^4 I  t-0.1 [ 
002.3 
I [ 
0023.1
I 
a] 
l:l 
I 
l*l 
^4 
l:lol*l-006s41:l-006s41
Itv,t'j L'y,roJ lnrv.,r'.1 
L'i I 
oosoJ 
I 
r.08eJ
We 
can now calculate 
fusing 
Eq. 
(6.28)]
Qtt 
= 
0.a671
Qo\= Q\ 
+ 
Qrt 
= 
0.4677 
+ 
0.6 
= 
1.0677
which is 
within limits.
If' the 
sanre 
problem 
is solved using a digital 
computer, 
the 
solution
converges 
in 
three iterations. The final results are 
given 
below:
Vz= 
1.081 
l- 
0.024 
rad
Vt 
= 
I.M  l-  0.0655 rad
Qu 
= 
- 
0.I5 
+ 
0.6 
= 
0.45 
(within 
linrits)
Sr 
= 
1.031 * 
j(- 
0.791)
P, 
(specifi"d) 
-I{ 
e,(epG11, 
- 
f,B,t) 
+ 
fihrG* 
-t 
epB,o} 
: 
0
k:l
i 
= 
l, 
2, 
..., 
n
i 
= 
slack(s)
n
rt.
B; 
(specifi"d) 
-) 
lf,koG,o 
- 
ftB,t1- 
e;(.f*Gi* 
* 
eoB,oy]} 
= 
g
k=l
(6.68)
(lbr 
each 
PQ 
bus) 
(6.69)