51. Bubert, H. et al. Characterization of the uppermost layer of plasma-
treated carbon nanotubes. Diamond Related Mater. 12, 811–815
(2003).
52. Kim, B. & Sigmund, W. M. Functionalized multiwall carbon nano-
tube/gold nanoparticle composites. Langmuir 20, 8239–8242 (2004).
53. Esumi, K., Ishigami, A., Nakajima, A., Sawadi, K. & Honda, H.
Carbon 34, 279 (1996).
54. Eitan, A., Jiang, K., Dukes, D., Andrews, R. & Schadler, L. S. Surface
modification of multiwalled carbon nanotubes: toward the tailoring of
the interface in polymer composites. Chem. Mater. 15, 3195–3201
(2003).
55. Valentini, L., Armentano, I., Puglia, D. & Kenny, J. M. Dynamics of
amine functionalized nanotubes/epoxy composites by dielectric re-
laxation spectroscopy. Carbon 42, 323–329 (2004).
56. Kyke, C. A., Stewart, M. P., Maya, F. & Tour, J. M. Diazonium-based
functionalization of carbon nanotubes: XPS and GC–MS analysis and
mechanistic implications. Synlett 1, 155–160 (2004).
57. Holzinger, M. et al. Sidewall functionalization of carbon nanotubes.
Angew. Chem. Int., Ed. 40, 4002–4005 (2001).
58. Moghaddam, M. J. et al. Highly efficient binding of DNA on the
sidewalls and tips of carbon nanotubes using photochemistry. Nano
Lett. 4, 89–93 (2004).
59. Pantarotto, D. et al. Synthesis, structural characterization and im-
munological properties of carbon nanotubes functionalized with pep-
tides. J. Am. Chem. Soc. 125, 6160–6164 (2003).
60. Dyke, C. A. & Tour, J. M. Solvent-free functionalization of carbon
nanotubes. J. Am. Chem. Soc. 125, 1156–1157 (2003).
61. Lozano, K., Yang, S. & Jones, R. E. Nanofiber toughened polyethyl-
ene composites. Carbon 42, 2329–2331 (2004).
62. Jin, Z., Pramoda, K. P., Xu, G. & Goh, S. H. Dynamic mechanical
behavior of melt-processed multi-walled carbon nanotube/poly
(methyl methacrylate) composites. Chem. Phys. Lett. 337, 43–47
(2001).
63. Kashiwagi, T. et al. Thermal degradation and flammability properties
of poly(propylene)/carbon nanotube composites. Macromol. Rapid
Commun. 23, 761–765 (2002).
64. Jin, L., Bower, C. & Zhou, O. Alignment of carbon nanotubes in a
polymer matrix by mechanical stretching. Appl. Phys. Lett. 73, 1197–
1199 (1998).
65. Shaffer, M. S. P. & Windle, A. H. Fabrication and characterization of
carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater. 11,
937–941 (1999).
66. Ruan, S. L., Gao, P., Yang, X. G. & Yu, T. X. Toughening high
performance ultrahigh molecular weight polyethylene using multi-
walled carbon nanotubes. Polymer 44, 5643–5654 (2003).
67. Ajayan, P. M., Stephan, O., Colliex, C. & Traught, D. Aligned carbon
nanotube arrays formed by cutting a polymer resin–nanotube com-
posite. Science 265
, 1212–1214 (1994).
68. Cadek, M. et al. in Molecular Nanostructures: XVII Int’l. Winter-
school/Euroconference on Electronic Properties of Novel Materials
(eds. Kuzmany, H., Fink, J., Mehring, M. & Roth, S.) 269–272
(American Institute of Physics, 2003).
69. Coleman, J. N. et al. High-performance nanotube-reinforced plastics:
understanding the mechanism of strength increase. Adv. Funct.
Mater. 14, 791–798 (2004).
70. Ryan, K. P. et al. Carbon-nanotube nucleated crystallinity in a con-
jugated polymer based composite. Chem. Phys. Lett. 391, 329–333
(2004).
71. Cadek, M., Coleman, J. N., Barron, V., Hedicke, K. & Blau,
W. J. Morphological and mechanical properties of carbon-nanotube-
reinforced semicrystalline and amorphous polymer composites. Appl.
Phys. Lett. 81, 5123–5125 (2002).
72. Stephan, C. et al. Characterization of singlewalled carbon nanotubes–
PMMA composites. Synth. Metals 108, 139–149 (2000).
73. Assouline, E. et al. Nucleation ability of multiwall carbon nanotubes
in polypropylene composites. J. Polym. Sci.: Part B: Polym. Phys. 41,
520–527 (2003).
74. Thostenson, E. T. & Chou, T.-W. Aligned multi-walled carbon nano-
tube-reinforced composites: processing and mechanical characteriza-
tion. J. Phys. D: Appl. Phys. 35, L77–L80 (2002).
75. Lourie, O., Cox, D. M. & Wagner, H. D. Buckling and collapse
of embedded carbon nanotubes. Phys. Rev. Lett. 81, 1638–1641
(1998).
76. Tibbetts, G. & McHugh, J. J. Mechanical properties of vapor-grown
carbon fiber composites with thermoplastic matrices. J. Mater. Res.
14, 2871–2880 (1999).
77. Koratkar, N., Wei, B. & Ajayan, P. Carbon nanotube films for
damping applications. Adv. Mater. 14, 997–1000 (2002).
78. Koratkar, N. A., Wei, B. & Ajayan, P. M. Multifunctional structural
reinforcement featuring carbon nanotube films. Compos. Sci. Tech-
nol. 63, 1525–1531 (2003).
79. Coleman, J. N. et al. Improving the mechanical properties of single-
walled carbon nanotube sheets by intercalation of polymeric adhe-
sives. Appl. Phys. Lett. 82, 1682–1684 (2003).
80. Wang, Z. J. Z. et al. Study on poly(methyl methacrylate)/carbon
nanotube composites. Mater. Sci. Eng. A271, 395–400 (1999).
81. Ajayan, P. M. Aligned carbon nanotubes in a thin polymer film. Adv.
Mater. 7, 489–491 (1995).
82. Moore, E. M., Ortiz, D. L., Marla, V. T., Shambaugh, R. L. & Grady,
B. P. Enhancing the strength of polypropylene fibers with carbon
nanotubes. J. Appl. Polym. Sci. 93, 2926–2933 (2004).
83. Kumar, S., Doshi, H., Srinivasarao, M., Park, J. O. & Schiraldi, D. A.
Fibers from polypropylene/nano carbon fiber composites. Polymer
43, 1701–1703 (2002).
84. Vigolo, B., Poulin, P., Lucas, M., Luanois, P. & Bernier, P. Appl.
Phys. Lett. 81, 1210–1212 (2002).
85. Barisci, J. N. et al. Properties of carbon nanotube fibers spun
from DNA-stabilized dispersions. Adv. Funct. Mater. 12, 133–138
(2004).
86. Sreekumar, T. V. et al. Polyacrylonitrile single-walled carbon nano-
tube composite fibers. Adv. Mater. 16, 58–61 (2004).
87. Kumar, S. et al. Synthesis, structure, and properties of PBO/SWNT
composites. Macromolecules 35, 9039–9043 (2002).
88. Ding, B., Kim, H. Y., Lee, S. C., Lee, D. R. & Choi, K. J. Preparation
and characterization of nanoscaled poly(vinyl alcohol) fibers via
electrospinning. Fibers Polym. 3, 73–79 (2002).
89. Ko, F. et al. Electrospinning of continuous carbon nanotube-filled
nanofiber yarns. Adv. Mater. 15, 1161–1165 (2003).
90. Seoul, C., Kim, Y.-T. & Berk, C.-K. Electrospinning of poly(vinyli-
dence fluoride)/dimethylformamide solutions with carbon nanotubes.
J. Polym. Sci.: Part B: Polym. Chem. 41, 1572–1577 (2003).
91. Mallick, P. K. Fiber Reinforced Composites: Materials, Manufactur-
ing, and Design (Marcel Dekker, Inc., New York, 1993).
92. Lucas, M. et al. in Structural and Electronic Properties of Molecular
Nanostructures (ed. Kuzmany, H.) 579–582 (American Institute of
Physics, 2002).
93. Bower, C., Rosen, R., Jin, L., Han, J. & Zhou, O. Deformation of
carbon nanotubes in nanotube–polymer composites. Appl. Phys. Lett.
74, 3317–3319 (1999).
94. Ajayan, P. M., Schadler, L. S., Giannaris, C. & Rubio, A. Single-
walled carbon nanotube–polymer composites: strength and weakness.
Adv. Mater. 12, 750–753 (2000).
95. Cooper, C. A., Young, R. J. & Halsall, M. Investigation into the
deformation of carbon nanotubes and their composites through the
use of Raman spectroscopy. Compos. Part A: Appl. Sci. Manufact. 32,
401–411 (2001).
96. Wood, J. R., Zhao, Q. & Wagner, H. D. Orientation of carbon
nanotubes in polymers and its detection by Raman spectroscopy.
Compos. Part A: Appl. Sci. Manufact. 32, 391–399 (2001).
97. Hobbie, E. K., Wang, H., Kim, H., Lin-Gibson, S. & Grulke, E. A.
Orientation of carbon nanotubes in a sheared polymer melt. Phys.
Fluids 15, 1196–1202 (2003).
98. Lin-Gibson, S., Pathak, J. A., Grulke, E. A., Wang, H. & Hobbie,
E. K. Elastic flow instability in nanotube suspensions. Phys. Rev. Lett.
92, 0483021–0483024 (2004).
99. Qian, D., Dickey, C., Andrews, R. & Rantell, T. Load transfer and
deformation mechanisms in carbon nanotube–polystyrene compos-
ites. Appl. Phys. Lett. 76, 1–4 (2000).
100. Lourie, O. & Wagner, H. D. Transmission electron microscopy ob-
servations of fracture of single-wall carbon nanotubes under axial
tension. Appl. Phys. Lett. 73, 3527–3529 (1998).
101. Dalton, A. B. et al. Continuous carbon nanotube composite fibers:
properties, potential applications, and problems. J. Mater. Chem. 14,
1–3 (2004).
102. Marrs, B., Andrews, R., Pienkowski, D. & Rantell, T. in
Orthopaedic
Research Society (San Francisco, 2004).
CARBON NANOTUBE POLYMER COMPOSITES / 597