
84 Applied Geometry for Computer Graphics and CAD
Hence
VP = M · VC · DC =
⎛
⎜
⎜
⎝
−234.050 1944.067 3.000
−460.844 −1152.079 −1.000
517.543 792.000 2.000
−3090.752 −10295.85 −26.000
⎞
⎟
⎟
⎠
.
Applying the viewing pipeline matrix VP to the vertices of the prism yields
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
3061
9061
9661
3661
6691
6091
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
VP =
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
−687.642 288.286 −5.000
−2091.941 11952.69 13.000
−4857.002 5040.214 7.000
−3452.703 −6624.188 −11.000
−2602.223 1583.98 4.000
162.838 8496.454 10.000
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
.
The Cartesian coordinates are
A
(137.528, −57.657) , B
(−160.919, 919.438) , C
(−693.857, 720.031) ,
D
(313.8821, 602.1989) , E
(−650.556, 395.995) , F
(16.284, 849.645) .
EXERCISES
4.15. A viewing pipeline is specified by: viewpoint (2, 3, 8), viewplane
z+4 = 0, viewplane origin O(−2, 1, −4), X-axis direction (1, 1, 0), Y -
axis direction (−1, 1, 0), viewplane window corners (−1, −7), (4, −2),
device viewport corners (400, 300), (800, 700). Determine the viewing
pipeline matrix VP. A tetrahedron has vertices A(1, 0, 1), B(3, 0, 1),
C(2, 2, 1), D(2, 1, 2). Apply VP to the tetrahedron, and sketch the
projected image and the device window.
4.16. A viewing pipeline is specified by: viewpoint (7, 0, 1), viewplane
x − y = 1, viewplane origin O(2, 1, 1), X-axis direction (1, 1, 0), Y -
axis direction (0, 0, 1), viewplane window corners lower left (−2, −3),
upper right (6, 6), device corners lower left (50, 50), upper right
(250, 150). Determine the viewing pipeline matrix VP. A tetrahe-
dron has vertices A(2, 0, 1), B(2, −1, 4), C(4, 4, 3), D(1, 0, 4). Apply
VP to the tetrahedron, and sketch the projected image and the de-
vice window.
4.17. A viewing pipeline is specified by: viewpoint (6, 2, 0), viewplane
2x − 4y + 4 = 0, viewplane origin O(−2, 0, 1), X-axis direction
(2, 1, 0), Y -axis direction (0, 0, 1), viewplane window corners lower
left (−20, −15), upper right (20, 15), device corners lower left (50, 50),
upper right (150, 200). Determine the viewing pipeline matrix VP.