126 
№1002. 
а) x
2
 + 2xy + y
2
 – m
2
 = (x + y)
2
 – m
2
 = (x + y – m)(x + y + m); 
б) p
2
 – a
2
 – 2ab – b
2
 = p
2
 – (a + b)
2
 = (p – a – b)(p + a + b); 
в) b
2
 – c
2
 – 8b + 16 = (b – 4)
2
 – c
2
 = (b – 4 – c)(b – 4 + c); 
г) 9 – c
2
 + a
2
 – 6a = (a – 3)
2
 – c
2
 = (a – 3 – c)(a – 3 + c). 
№1003.   а) x
2
 – y
2
 – x – y = (x – y)(x + y) – (x + y) = (x +y)(x – y – 1); 
б) a
2
 – b
2
 – a + b = (a – b)(a + b) – (a – b) = (a – )(a + b – 1); 
в) m + n + m
2
 – n
2
 = (m + n) + (m – n)(m + n) = (1 + m – n)(m + n); 
г) k
2
 – k – p
2
 – p = (k – p)(k + p) – (k + p) = (k + p)(k – p – 1). 
№1004.   а) a – b + a
2
 – b
2
 = (a – b) + (a – b)(a + b) = (a – b)(1 + a + b); 
б) c
2
 + d – d
2
 + c = (c – d)(c + d) + (c + d) = (c + d)(c – d + 1). 
№1005. 
а) ab
2
–a–b
3
+b=b
2
(a–b) – (a – b) = (b
2
 – 1)(a – b) = (b – 1)(b + 1)(a – b); 
б) bx
2
+2b
2
–b
3
–2x
2
=x
2
(b–2)+b
2
(2–b)=(x
2
 – b
2
)(b – 2)=(x–b)(x + b)(b – 2); 
в) x
3
+x
2
y–4y–4x=x
2
(x+y)–4(x+y)=(x
2
 – 4)(x + y) = (x – 2)(x + 2)(x + y); 
г) x
3
–3y
2
+3x
2
–xy
2
=x
2
(x+3)–y
2
(x + 3) = (x
2
 – y
2
)(x + 3)=(x–y)(x+y)(x + 3). 
№1006. 
а) x
3
 – x = 0,  x(x
2
 – 1) = 0,  x(x – 1)(x + 1) = 0,  x
1
 = 0; x
2
 = 1; x
3
 = –1; 
б) 9x – x
3
 = 0,   x(9 – x
2
) = 0,   x(3 – x)(3 + x) = 0,   x
1
 = 0; x
2
 = 3; x
3
 = –3; 
в) x
3
 + x
2
 = 0,   x
2
(x + 1) = 0,   x
1
 = 0; x
2
 = –1; 
г) 5x
4
–20x
2
=0,   5x
2
(x
2
–4)=0,   5x
2
(x – 2)(x + 2) = 0,  x
1
=0;  x
2
=2; x
3
=–2. 
№1007. 
а) x
3
 + x = 0,   x(x
2
 + 1) = 0,  x
1
 = 0; больше нет, т.к. x
2
 + 1 ≠ 0 для любого x;
 
б) x
3
 – 2x
2
 = 0,    x
2
(x – 2) = 0,   x
1
 = 0; x
2
 = 2. 
№1008. 
x
3
 – x = x(x
2
 – 1) = x(x– 1)(x + 1). 
Выражение делится на 6, т.к. хотя бы одно из x, x + 1, x + 2 четно и одно де-
лится на 3. 
№1009. 
Если 2a – 1, 2a + 1 — два последовательных нечетных числа, то 
(2a + 1)
2
 – (2a – 1)
2
 = (2a + 1 – 2a + 1)(2a + 1 + 2a – 1) = 2(4a) = 8a  
кратно 8. 
№1010. 
а) (6x–1)(6x+1) – (12x – 5)(3x + 1) = 36x
2
 – 1 – (36x
2
 + 12x – 15x – 5) = 
= 36x
2
 – 1– 36x
2
 + 3x + 5 = 3x + 4,   при x=0,2,   3x+4=3 ⋅ 0,2 + 4 = 4,6; 
б) (5+2x)
2
–2,5x(8x+7)=25 + 20x + 4x
2
 – 20x
2
 – 17,5x=–16x
2
 + 2,5x + 25, 
при x = –0,5, –16x
2
 + 2,5x + 25 =  –16 ⋅ 0,25 + 2,5 ⋅ (–0,5) + 25 = 19,75. 
№1011.   y = 0,02x
2
; 
а) A(15; 4,5)   0,02 ⋅ 15
2
 = 4,5 ⇒ A ∈ графику; 
б) B(–2,05; –0,12)  0,02 ⋅ (–2,02)
2
 = 0,08405 ≠ –0,12 ⇒ B ∉ графику; 
в) C(50; 50) 0,02 ⋅ 50
2
 = 50 ⇒ C ∈ графику. 
№1012.   y = 0,24x + 6; 
Т.к. график функции пересекается с Ox, то y = 0, 
0,24x + 6 = 0, 0,24x = –6, x = 25, A(25; 0); 
Т.к. график функции пересекается с Oy, то x = 0, 
y = 0,24 ⋅ 0 + 6, y = 6, B(0; 6).