
 
141 
№1105. 
x + 2x = 18,  3x = 18,    x = 6.       Ответ: (3; 3). 
№1106. 
Подставим x и y в уравнение:  a⋅2 + 2 ⋅ 1 = 8, 2a + 2 = 8, 2a = 6, a = 3. 
Т.е. 3x + 2y = 8. 
№1107. 
а) 2c(c – 4)
2
 – c
2
(2c – 10) = 2c(c
2
 – 8c + 16) – 2c
3
 + 10c
2
 = 
= 2c
3
 – 16c
2
 + 32c – 2c
3
 + 10c
2
 = –6c
2
 + 32c = 2c(–3c + 16); 
при c = 0,2, 2c(–3c + 16) = 2 ⋅ 0,2(–3 ⋅ 0,2 + 16) = 0,4 ⋅ 15,4 = 6,16 
б) (a – 4b)(4b + a) = a
2
 – 16b
2
; 
при a = 1,2; b = –0,6, a
2
 – 16b
2
 = 1,44 – 16 ⋅ 0,36 = 1,44 – 5,76 = –4,32. 
№1108. 
а) 1+a–a
2
 – a
3
 = (1 + a) – a
2
(1 + a) = (1 – a
2
)(1 + a)=(1–a)(1 + a)(1 + a); 
б) 8–b
3
+4b–2b
2
=(2–b)(4+2b + b
2
) + 2b(2 – b)=(2–b)(4 + 2b + b
2
 + 2b) =  
= (2 – b)(4 + 4b + b
2
) = (2 – b)(2 + b)
2
 = (2 – b)(2 + b)(2 + b). 
40. График линейного уравнения с двумя переменными 
№1109. 
3x + 4y = 12; 
а) A(4; 1), т.к. 3 ⋅ 4 + 4 ⋅ 1 = 12 + 4 = 16 ≠ 12 , то A ∉ графику; 
б) B(1; 3), т.к. 3 ⋅ 1 + 4 ⋅ 3 = 3 + 12 = 15 ≠ 12 , то B ∉ графику; 
в) C(–6; –7,5), т.к. 3 ⋅ (–6) + 4 ⋅ (–7,5) = –48 ≠ 12 , то C ∉ графику; 
г) D(0; 3), т.к. 3 ⋅ 0 + 4 ⋅ 3 = 12, то D ∈ графику. 
№1110. 
x – 2y = 4; 
а) A(6; 1), т.к. 6 – 2 ⋅ 1 = 4, то A ∈ графику; 
б) B(–6; –5), т.к. –6 – 2 ⋅ (–5) = 4 , то B ∈ графику; 
в) C(0; –3), т.к. 0 – 2 ⋅ (–2) = 4, то C ∈ графику; 
г) D(–1; 3), т.к. –1 – 2 ⋅ 3 = –7 ≠ 4, то D ∉ графику. 
№1111. 
3x – y = –5, т.к. 3 ⋅ (–1) – 2 = –5, то P ∈ графику; 
–x + 10y = 21, т.к. –(–1) + 10 ⋅ 2 = 21, то P ∈ графику; 
11x + 21y = 31, т.к. 11 ⋅ (–1) + 21 ⋅ 2 = 31, то P ∈ графику. 
№1112. 
а) 2x – y = 6 
y = 2x – 6 
x 0  3 
y –6  0 
 
 
 
 
 
 
 
6
3
0
 = 2
x
 –6