
rifting and hydrothermal delivery of iron to the oceans
(Asmerom et al., 1991). Insofar as long-term nutrient-driven
cycles of primary productivity may have drawn down green-
house gases (Kaufman et al., 1997), the Neoproterozoic return
of BIFs may have contributed to the widespread low latitude
“snowball Earth” glaciations (Hoffman et al., 1998).
Bruce M. Simonson and Alan J. Kaufman
Bibliography
Anbar, A.D., and Knoll, A.H., 2002. Proterozoic ocean chemistry and evo-
lution: A bioinorganic bridge? Science, 297, 1137–1192.
Arnold, G.L., Anbar, A.D., Barling, J., and Lyons, T.W., 2004. Molybde-
num isotope evidence for widespread anoxia in mid-Proterozoic oceans.
Science, 304,87–90.
Asmerom, Y., Jacobsen, S.B., Knoll, A.H., Butterfield, N.J., and Swett, K.,
1991. Strontium isotopic variations of Neoproterozoic seawater; impli-
cations for crustal evolution. Geochimica et Cosmochimica Acta, 55,
2883–2894.
Beard, B.L., Johnson, C.M., Cox, L., Sun, H., Nealson, K.H., and Aguilar,
C., 1999. Iron isotope biosignatures. Science, 285, 1889–1892.
Bekker, A., Kaufman, A.J., Karhu, J.A., Beukes, N.J., Swart, Q.D.,
Coetzee, L.L., and Eriksson, K.A., 2001. Chemostratigraphy of the
Paleoproterozoic Duitschland Formation, South Africa: Implications
for coupled climate change and carbon cycling. Am. J. Sci., 301,
261–285.
Beukes, N.J., 1983. Palaeoenvironmental setting of iron-formations in the
depositional basin of the Transvaal Supergroup, South Africa. In Tren-
dall and Morris (eds.), Iron Formations: Facts and Problems. Amster-
dam: Elsevier, pp. 131–209.
Beukes, N.J., 1984. Sedimentology of the Kuruman and Griquatown
Iron-formations, Transvaal Supergroup, Griqualand West, South Africa.
Precambrian Res., 24,47–84.
Canfield, D.E., 2005. The early history of atmospheric oxygen. Annu. Rev.
Earth and Planetary Sci., 33,1–36.
Cloud, P., 1973. Paleoecological significance of the banded iron-formation.
Econ. Geol., 68, 1135–1143.
Clout, J.M.F., and Simonson, B.M., 2005. Precambrian iron formations
and iron formation-hosted iron ore deposits. In Hedenquist, J.W.,
Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (eds.), Economic
Geology - 100th Anniversary Volume. Littleton, Colorado: Society of
Economic Geologists, pp. 643–680.
Coale, K.H., Johnson, K.S., Fitzwater, S.E., Gordon, R.M., and Tanner, S.,
et al., 1996. A massive phytoplankton bloom induced by an ecosystem-
scale iron fertilization experiment in the equatorial Pacific Ocean.
Nature, 383, 495–501.
Derry, L.A., Kaufman, A.J., and Jacobsen, S.B., 1992. Sedimentary cycling
and environmental change in the Late Proterozoic: Evidence from stable
and radiogenic isotopes. Geochimica et Cosmochimica Acta, 56,
1317–
1329.
Eriksson, K.A., and Donaldson, J.A., 1986. Basinal and shelf sedimenta-
tion in relation to the Archaean-Proterozoic boundary. Precambrian
Res., 33, 103–121.
Ewers, W.E., and Morris, R.C., 1981. Studies of the Dales Gorge Member
of the Brockman Iron Formation, Western Australia. Econ. Geol., 76,
1929–1953.
Fralick, P.W., and Barrett, T.J., 1995. Depositional controls on iron forma-
tion associations in Canada. In Plint, A.G. (ed.), Sedimentary Facies
Analysis. International Association of Sedimentologists, Special Publi-
cation, 22, pp. 137–156.
Gross, G.A., 1965. Geology of Iron Deposits of Canada, vol. I: General
Geology and Evaluation of Iron Deposits. Ottawa: Geological Survey
of Canada, Economic Geology Report 22.
Gross, G.A., 1972. Primary features in cherty iron formations. Sediment.
Geol., 2, 241–261.
Gross, G.A., 1983. Tectonic systems and the deposition of iron-formation.
Precambrian Res., 20, 171–187.
Grotzinger, J.P., 1994. Trends in Precambrian carbonate sediments and their
implications for understanding evolution. In Bengston, S. (ed.), Early
Life on Earth. Nobel Symposium, 84. New York: Columbia University
Press, pp. 245–258.
Groves, D.I., Condie, K.C., Goldfarb, R.J., Hronsky, J.M.A., and Vielrei-
cher, R.M., 2005. Secular changes in global tectonic processes and their
influence on the temporal distribution of gold-bearing mineral deposits.
Econ. Geol., 100, 203–224.
Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P., 1998.
A Neoproterozoic snowball Earth. Science, 281, 1342–1346.
Isley, A.E., 1995. Hydrothermal plumes and the delivery of iron to banded
iron formation. J. Geol., 103, 169–185.
Isley, A.E., and Abbott, D.H., 1999. Plume-related mafic volcanism and the
deposition of banded iron formation. J. Geophys. Res., 104,
15,461–15,477.
James, H.L., 1954. Sedimentary facies of iron-formation. Econ. Geol., 49,
235–293.
Kaufman, A.J., 1996. Geochemical and mineralogic effects of contact
metamorphism on banded iron formation: an example from the Trans-
vaal Basin, South Africa. Precambrian Res., 79
, 171–194.
Kaufman, A.J., 1999. The genesis of siderite in Archean and Paleoprotero-
zoic oceans. In Ninth Annual V.M. Goldschmidt Conference Abstracts
with Program. Houston: Lunar and Planetary Institute, Lunar and Pla-
netary Institute Contribution No. 971, p. 146.
Kaufman, A.J., Hayes, J.M., and Klein, C., 1990. Primary and diagenetic
controls of isotopic compositions of iron-formation carbonates. Econ.
Geol., 54, 3461–3473.
Kaufman, A.J., Knoll, A.H., and Narbonne, G.M., 1997. Isotopes, ice ages,
and terminal Proterozoic earth history. Proc. Natl. Acad. Sci., 94,
6600–6605.
Klein, C., 1983. Diagenesis and metamorphism of banded iron-formations.
In Trendall and Morris (eds.), Iron-formations: Facts and Problems.
Amsterdam: Elsevier, pp. 417–469.
Klein, C., and Beukes, N.J., 1992. Proterozoic iron formations. In Condie,
K.C. (ed.), Proterozoic Crustal Evolution. Amsterdam: Elsevier,
pp. 383–418.
Klein, C., and Beukes, N.J., 1993. Sedimentology and geochemistry of the
glaciogenic Late Proterozoic Rapitan iron-formation in Canada. Econ.
Geol., 88, 542–565.
Klein, C., and Ladeira, E.A., 2004. Geochemistry and mineralogy of
Neoproterozoic banded iron-formations and some selected, siliceous
manganese formations from the Urucum District, Mato Grosso do
Sul, Brazil. Econ. Geol., 99, 1233–1244.
Lowe, D.R., 1992. Major events in the geological development of the
Precambrian earth. In Schopf, J.W., and Klein, C. (eds.), The Protero-
zoic Biosphere - A Multidisciplinary Study. New York: Cambridge
University Press, pp. 67–75
Maliva, R.G., Knoll, A.H., and Simonson, B.M., 2005. Secular change in
the Precambrian silica cycle: Insights from chert petrology. Geol. Soc.
Am. Bull., 117, 835–845.
Ojakangas, R.W., 1983. Tidal deposits in the early Proterozoic basin of
the Lake Superior region - the Palms and Pokegama Formations:
Evidence for subtidal shelf deposition of Superior-type banded iron-
formation. In Medaris, L.G. Jr. (ed.), Early Proterozoic Geology of
the Great Lakes Region. Geological Society of America Memoir, 60,
pp. 49–66.
Rouxel, O.J., Bekker, A., and Edwards, K.J., 2005. Iron isotope constraints
on the Archean and Paleoproterozoic ocean redox state. Science, 307,
1088–1091.
Simonson, B.M., 1985. Sedimentological constraints on the origins of Pre-
cambrian iron-formations. Geol. Soc. Am. Bull., 96
, 244–252.
Simonson, B.M., 1987. Early silica cementation and subsequent diagenesis
in arenites from four early Proterozoic iron formations of North
America. J. Sediment. Petrol., 57, 494–511.
Simonson, B.M., 2003. Origin and evolution of large Precambrian iron for-
mations. In Chan, M., and Archer., A. (eds.), Extreme Depositional
Environments: Mega End Members in Geologic Time. Geological
Society of America, Special Paper, 370, pp. 231–244.
Simonson, B.M., and Hassler, S.W., 1996. Was the deposition of large
Precambrian iron formations linked to major marine transgression?
J. Geol., 104, 665–676.
Trendall, A.F., 2002. The significance of iron-formation in the Precambrian
stratigraphic record. In Altermann, W., and Corcoran, P.L. (eds.), Pre-
cambrian Sedimentary Environments: A Modern Approach to Ancient
Depositional Systems. International Association of Sedimentologists,
Special Publication, 33, pp. 33–66.
Trendall, A.F., and Blockley, J.G., 1970. The Iron Formations of the Pre-
cambrian Hamersley Group, Western Australia. Perth: Geological Sur-
vey of Western Australia, Bulletin, 119.
88 BANDED IRON FORMATIONS AND THE EARLY ATMOSPHERE