
the beginning of the millennium and shows smaller variations but
also an increasing trend to a value of 700 ppbv at
AD 1750. The
increase could already be attributed to pre-industrial
anthropogenic influences, such as expansion of rice cultivation
and cattle.
Latitudinal distribution of pre-industrial CH
4
sources
Not only does the CH
4
concentration change with climatic varia-
tions but so does the inter-hemispheric concentration difference.
This combination of results can be used to make a rough estimate
of the latitudinal source distribution. In a simple model, sources in
the three boxes 90–30
N (northern box), 30
N–30
S (tropical
box) and 30–90
S (southern box) are taken into account
(Chappellaz et al., 1997). It is assumed that the source in the
southern box contributed 12 Tg yr
-1
during the cold periods of
the last glacial period and 15 Tg yr
-1
during the mild periods
of the last glacial epoch and the pre-industrial Holocene. The
model results are shown in Figure C10 (Dällenbach et al., 2000).
A remarkable, but still tentative, conclusion based on these
estimates is that the CH
4
variations during the last glacial epoch
were not mainly due to source changes in the tropics but in the
northern box.
Bernhard Stauffer
Bibliography
Blunier, T., and Brook, E.J., 2001. Timing of Millennial-Scale Climate
change in Antarctica and Greenland during the Last Glacial Period.
Science, 291(5501), 109–112.
Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B., and Raynaud, D.,
1995. Variations in atmospheric methane concentration during the
Holocene epoch. Nature, 374,46–49.
Chappellaz, J., Blunier, T., Raynaud, D., Barnola, J.M., Schwander, J., and
Stauffer, B., 1993. Synchronous changes in atmospheric CH
4
and
Greenland climate between 40 and 8 kyr BP. Nature, 366, 443–445.
Chappellaz, J., Blunier, T., Kints, S., Dällenbach, A., Barnola, J.-M.,
Schwander, J., Raynaud, D., and Stauffer, B., 1997. Changes in the
atmospheric CH
4
gradient between Greenland and Antarctica during
the Holocene. J. Geophys. Res., 102(D13), 15987–15999.
Dällenbach, A., Blunier, B., Flückiger, J., Stauffer, B., Chappellaz, J., and
Raynaud, D., 2000. Changes in the atmospheric CH
4
gradient between
Greenland and Antarctica during the last glacial and the transition to the
Holocene. Geophys. Res. Lett., 27(7), 1005–1008.
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S.,
Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E.,
Jouzel, J., and Bond, G., 1993. Evidence for general instability of past
climate from a 250 kyr ice-core record. Natur e, 364, 218–220.
EPICA members, 2004. Eight glacial cycles from an Antractic ice core,
Nature, 429, 623–628.
Etheridge, D.M., Steele, L.P., Langenfields, R.L., Francey, R.J., Barnola, J.-M.,
and Morgan, V.I., 1996. Natural and anthropogenic changes in atmospheric
CO
2
over the last 1000years from air in Antarctic ice and firn. J. Geophys.
Res., 101,4115–4128.
Flückiger, J., Monnin, E., Stauffer, B., Schwander, J., Stocker, T., Chappellaz, J.,
Raynaud, D., and Barnola, J.-M., 2002. High resolution Holocene N
2
O
ice core record and its relationship with CH
4
and CO
2
. Global Biogeochem.
Cycles, 16(1), doi: 10.1029 /2001GB001417.
Indermühle, A., T.F. Stocker, F. Joos, H. Fischer, H.J. Smith, M. Wahlen,
B. Deck, D. Mastroianni, J. Tschuni, T. Blunier, R. Meyer, B. Stauffer,
1999. Holocene carbon-cycle dynamics based on CO
2
trapped in ice at
Taylor Dome, Antarctica, Nature, 398, 121–126.
Indermühle, A., Monnin, E., Stauffer, B., Stocker, T., and Wahlen, M.,
2000. Atmospheric CO
2
concentration from 60 to 20 kyr BP from the
Taylor Dome ice core, Antarctica. Geophys. Res. Lett., 27(5), 735–738.
Joos, F., 2006. Radiative forcing and the ice core greenhouse gas record.
PAGES News, 13(3), 11–13.
MacFarling Meure, C., Etheridge, D., Trudinger , C., Steele, P., Langenfelds, R.,
van Ommen, T ., Smith, A., and Elkins, J., 2006. Law Dome CO
2
,CH
4
and N
2
O ice core records extended to 2000 years BP. Geophys. Res. Lett.,
33, L14810, doi: 10.1029/2006GL026152.
Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B.,
Stocker, T., Raynaud, D., and Barnola, J.-M., 2001. Atmospheric CO
2
Con-
centrations over the Last Glacial Termination. Science, 291(5501),
112–114.
Monnin, E., Steig, E.J., Siegenthaler, U., Kawamura, K., Schwander, J.,
Stauffer, B., Stocker, T.F., Morse, D.L., Barnola, J.-M., Bellier, B.,
Raynaud, D., and Fischer, H., 2004. Evidence for substantial accu-
mulation rate variability in Antarctica during the Holocene, through
synchronization of CO
2
in the Taylor Dome, Dome C and DML ice cores.
Earth Planet. Sci. Lett., 224, doi: 10.1016/ j.epsl.2004.05.007, 45–54.
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I.,
Bender, M., Chappellaz, J., Davis, M., Delaygue, M., Delmotte, M.,
Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L.,
Ritz, C., Saltzman, E., and Stievenard, M., 1999. Climate and atmospheric
history of the past 420,000 years from the Vostok ice core, Antarctica,
Nature, 399,429–436.
Röthlisberger, R., Bigler, M., Wolff, E.W., Joos, F., Monnin, E., and
Hutterli, M.A., 2004. Ice core evidence for the extent of past atmo-
spheric CO
2
change due to iron fertilisation. Geophys. Res. Lett., 31,
L16207, 1–4.
Siegenthaler, U., Monnin, E., Kawamura, K., Spahni, R., Schwander, J.,
Stauffer, B., Stocker, T., Barnola, J.-M., and Fischer, H., 2005. Support-
ing evidence from the EPICA Dronning Maud Land ice core for
atmospheric CO
2
changes during the past millennium. Tellus, 57B,
51–57.
Sowers, T., 2001. N
2
O record spanning the penultimate deglaciation from
the Vostok ice core. J. Geophys. Res., 106(D23), 31903–31914.
Spahni, R., Schwander, J., Flückiger, J., Stauffer, B., Chappellaz, J., and
Raynaud, D., 2003. The attenuation of fast atmospheric CH
4
variations
recorded in polar ice cores. Geophys. Res. Lett., 30(11), 1571, doi:
10.1029/ 2003GL017093.
Spahni, R., Chappellaz, J., Stocker, T.F., Loulergue, L., Hausammann, G.,
Kawamura, K., Flückiger, J., Schwander, J., Raynaud, D., Masson-
Delmotte, V., and Jouzel, J., 2005. Atmospheric Methane and Nitrous
Oxide of the Late Pleistocene from Antarctic Ice Cores. Science,
310(5752), 1317–1321.
Cross-references
Antarctic Cold Reversal
Carbon Isotopes, Stable
Climate Variability and Change, Last 1,000 Years
Dansgaard-Oeschger Cycles
Deuterium, Deuterium Excess
Holocene Climates
Ice cores, Antarctica and Greenland
Last Glacial Maximum
Oxygen Isotopes
Pleistocene Climates
Quaternary Climate Transitions and Cycles
CARBON DIOXIDE, DISSOLVED (OCEAN)
The ocean contains about 60 times more carbon in the form of
dissolved inorganic carbon than in the pre-anthropogenic atmo-
sphere (600 Pg C). On time scales <10
5
yr, the ocean is the
largest inorganic carbon reservoir (38,000 Pg C) in exchange
with atmospheric carbon dioxide (CO
2
) and as a result, the
ocean exerts a dominant control on atmospheric CO
2
levels.
The average concentration of inorganic carbon in the ocean is
2.3 mmol kg
1
and its residence time is 200 ka.
Dissolved carbon dioxide in the ocean occurs mainly in
three inorganic forms: free aqueous carbon dioxide (CO
2
(aq)),
bicarbonate (HCO
3
), and carbonate ion (CO
3
2
). A minor form
CARBON DIOXIDE, DISSOLVED (OCEAN) 123