
B.  Conduction  Electron  Transport  31 
Table 2.1. 
Characteristics of selected metallic elements  [from Poole 
et  al. 
(1995),  p.  2] 
n e 
Radius  Xtal 
a 
(1022)  r s  p,  77K  p,  273K  z,  77K  r, 273K 
Z  Element  Valence  (A)  type  (A)  \~m-~m 3 ]  (A)  (#f~ cm)  (#f2 cm)  (fs)  (fs) 
Kth 
(w) 
11  Na  1  0.97  bcc  4.29  2.65  2.08  0.8  4.2  170  32 
19  K  1  1.33  bcc  5.23  1.40  2.57  1.38  6.1  180  41 
29  Cu  1  0.96  fcc  3.61  8.47  1.41  0.2  1.56  210  27 
47  Ag  1  1.26  fcc  4.09  5.86  1.60  0.3  1.51  200  40 
41  Nb  1  0.67  bcc  3.30  5.56  1.63  3.0  15.2  21  4.2 
20  Ca  2  0.99  fcc  5.58  4.61  1.73  3.43  22 
38  Sr  2  1.12  fcc  6.08  3.55  1.89  7  23  14  4.4 
56  Ba  2  1.34  bcc  5.02  3.15  1.96  17  60  6.6  1.9 
13  A1  3  0.51  fcc  4.05  18.1  1.10  0.3  2.45  6.5  8.0 
81  T1  3  0.95  bcc  3.88  10.5  1.31  3.7  15  9.1  2.2 
50  Sn(W)  4  0.71  tetrg  a =  5.82  14.8  1.17  2.1  10.6  11  2.3 
c=3.17 
82  Pb  4  0.84  fcc  4.95  13.2  1.22  4.7  19.0  5.7  1.4 
51  Sb  5  rhomb  4.51  16.5  1.13  8  39  2.7  0.55 
83  Bi  5  rhomb  4.75  14.1  1.19  35  107  0.72  0.23 
1.38 
1.0 
4.01 
4.28 
0.52 
2.06 
~0.36 
~0.19 
2.36 
0.5 
0.64 
0.38 
0.18 
0.09 
a 
Notation:  a.  lattice  constant;  n e.  conduction  electron  density; 
r s  =  (3~4tOne)l~3;  p, 
resistivity:  ~,  Drude 
relaxation time; Kth, thermal conductivity;  L = 
pKth/T 
is the  Lorentz number;  7,  electronic  specific  heat 
parameter; m*.  effective mass; R H, Hall constant; |  Debye temperature;  %, plasma frequency in radians 
per  femtosecond  (10-15s);  IP,  first  ionization potential;  WF, work  function; 
Ev, 
Fermi  energy;  T F,  Fermi 
temperature in kilokelvins; 
k v, 
Fermi wavenumber in mega reciprocal centimeters; and 
vv, 
Fermi velocity in 
centimeters per microsecond. 
The  resistivity  p(T)  of  a  typical  metal  has  a  temperature-independent 
impurity  contribution  Po  and  a  temperature-dependent  phonon  contribution 
Pph(T), and these  add by Matthiessen's rule, 
/9(T)  =/90  -3 t-/gph(T),  (7) 
where Po is the controlling factor at very low temperatures.  We see from the data 
in  columns  11  and  12  of Table  2.1  that  the  collision  time  decreases  with  the 
temperature;  it  has  the  temperature  dependences  r  ~  T -3  for  T << ~D  and 
~  T -1  for  T >> ~D,  where  ~D  is the  Debye temperature.  The  dominance  of 
scattering in the forward direction for T  << ~i~ introduces the additional factor T 2 
leading  to  the  Bloch  T 5 law  Pph(T)- AT 5.  Umklapp  processes,  phonon  drag, 
and other factors  can cause  deviations  from this  T 5 law.  We obtain the limiting 
behaviors 
p(T) ,~ Po + ATS,  T 
<< O D 
(8a) 
p(T) ~  Po 
+ 
A'T,  T  >> O o.  (8b) 
Figure 2.1  shows the temperature  dependence  of the resistivity of a high purity 
(low  Po)  and  a  lower  purity  (larger Po)  good  conductor.  Typical resistivities  at