
81
Îñíîâíûå ïðàâèëà äèôôåðåíöèðîâàíèÿ
Ïóñòü Ñ ïîñòîÿííàÿ, u(x), v(x) äèôôåðåíöèðóåìûå â òî÷êå õ
ôóíêöèè.
1. C′ = 0;
2. x′ = 1;
3. (u ± v)′ = u′ ± u′;
4. (cu)′ = cu′;
5. (uv)′ = u′v + uv′;
6.
,
2
v
vuvu
v
u
′
−
′
=
′
v ≠ 0;
7. Åñëè y = f(u), ãäå u = u(x), (òî åñòü y = f(u(x)) ñëîæíàÿ
ôóíêöèÿ îò õ) è ôóíêöèè f (u) è u(x) äèôôåðåíöèðóåìû, òî ïðîèç-
âîäíàÿ ñëîæíîé ôóíêöèè y = f (u(x)) âû÷èñëÿåòñÿ ïî ôîðìóëå
.
xux
ufy
′
⋅
′
=
′
8. Åñëè ôóíêöèÿ àðãóìåíòà õ çàäàíà ïàðàìåòðè÷åñêè
=
=
),(
)(
ty
tx
ψ
ϕ
òî
dt
dx
dt
dy
y
x
=
′
èëè
.
t
t
x
x
′
′
=
′
Îïðåäåëåíèå. Äèôôåðåíöèàëîì ôóíêöèè y = f(x) íàçûâàåòñÿ
ãëàâíàÿ ÷àñòü åå ïðèðàùåíèÿ, ëèíåéíàÿ îòíîñèòåëüíî ïðèðàùåíèÿ
àðãóìåíòà, òî åñòü, åñëè ∆y = f ′(x)∆x +
α
(∆x) · ∆x, ãäå
α
(∆x) → 0
áåñêîíå÷íî ìàëàÿ ôóíêöèÿ ïðè ∆x → 0, òî äèôôåðåíöèàë ôóíê-
öèè dy = f ′(x)dx.
Äèôôåðåíöèàë íåçàâèñèìîãî àðãóìåíòà ðàâåí ïðèðàùåíèþ àð-
ãóìåíòà, òî åñòü dx = ∆x. Ñëåäîâàòåëüíî, dy = f ′ (x) · dx.
Åñëè ∆x ìàëî, òî ∆y ≈ dy, è, ñëåäîâàòåëüíî, f(x + ∆x) ≈ f (x) + dy =
= f(x) + f ′(x)dx (ôîðìóëà ïðèáëèæåííîãî âû÷èñëåíèÿ ñ ïîìîùüþ
äèôôåðåíöèàëà).
Ïðèìåð 2.11. Íàéòè ïðîèçâîäíûå äàííûõ ôóíêöèé:
à)
;
43
63
2
xx
x
y
+−
+
=