33–38 Evaluate the integral.
33.
34.
35.
36.
37.
38.
39. Find if and .
40. Find if and .
41. Prove Formula 1 of Theorem 3.
42. Prove Formula 3 of Theorem 3.
43. Prove Formula 5 of Theorem 3.
44. Prove Formula 6 of Theorem 3.
45. If and , use
Formula 4 of Theorem 3 to find
46. If and are the vector functions in Exercise 45, use
Formula 5 of Theorem 3 to find
47. Show that if is a vector function such that exists, then
48. Find an expression for .
If , show that .
[
Hint:
]
50. If a curve has the property that the position vector is
always perpendicular to the tangent vector , show that
the curve lies on a sphere with center the origin.
51. If , show that
u⬘共t兲 苷 r共t兲 ⴢ 关r⬘共t兲 ⫻ r共t兲兴
u共t兲 苷 r共t兲 ⴢ 关r⬘共t兲 ⫻ r⬙共t兲兴
r⬘共t兲
r共t兲
ⱍ
r共t兲
ⱍ
2
苷 r共t兲 ⴢ r共t兲
d
dt
ⱍ
r共t兲
ⱍ
苷
1
ⱍ
r共t兲
ⱍ
r共t兲 ⴢ r⬘共t兲r共t兲 苷 0
49.
d
dt
关u共t兲 ⴢ 共v共t兲 ⫻ w共t兲兲兴
d
dt
关r共t兲 ⫻ r⬘共t兲兴 苷 r共t兲 ⫻ r⬙共t兲
r⬙r
d
dt
关u共t兲 ⫻ v共t兲兴
vu
d
dt
关u共t兲 ⴢ v共t兲兴
v共t兲 苷 具t, cos t, sin t典u共t兲 苷 具sin t, cos t, t典
r共0兲 苷 i ⫹ j ⫹ kr⬘共t兲 苷 t i ⫹ e
t
j ⫹ te
t
kr共t兲
r共1兲 苷 i ⫹ jr⬘共t兲 苷 2t
i ⫹ 3t
2
j ⫹
s
t
kr共t兲
y
共cos
t i ⫹ sin
t j ⫹ t k兲 dt
y
共e
t
i ⫹ 2t j ⫹ ln t k兲 dt
y
2
1
(
t
2
i ⫹ t
s
t ⫺ 1 j ⫹ t sin
t k
)
dt
y
兾2
0
共3 sin
2
t cos t i ⫹ 3 sin t cos
2
t j ⫹ 2 sin t cos t k兲 dt
y
1
0
冉
4
1 ⫹ t
2
j ⫹
2t
1 ⫹ t
2
k
冊
dt
y
1
0
共16t
3
i ⫺ 9t
2
j ⫹ 25t
4
k兲 dt
10.
11.
12.
13.
14.
16.
17–20 Find the unit tangent vector at the point with the
given value of the parameter .
17.
,
18.
,
,
20. ,
21. If , find and
22. If , find , , and
23–26 Find parametric equations for the tangent line to the curve
with the given parametric equations at the specified point.
23. ,,;
24. ,, ;
,,;
26. ,,;
;
27–29 Find parametric equations for the tangent line to the
curve with the given parametric equations at the specified point.
Illustrate by graphing both the curve and the tangent line on a
common screen.
27. ,, ;
28. ,, ;
29. ,, ;
30. (a) Find the point of intersection of the tangent lines to the
curve at the points
where and .
;
(b) Illustrate by graphing the curve and both tangent lines.
31. The curves and
intersect at the origin. Find their angle of intersection correct
to the nearest degree.
32. At what point do the curves and
intersect? Find their angle of
intersection correct to the nearest degree.
r
2
共s兲 苷 具3 ⫺ s, s ⫺ 2, s
2
典
r
1
共t兲 苷 具t, 1 ⫺ t, 3 ⫹ t
2
典
r
2
共t兲 苷 具sin t, sin 2t, t 典r
1
共t兲 苷 具t, t
2
, t
3
典
t 苷 0.5t 苷 0
r共t兲 苷 具sin
t, 2 sin
t, cos
t典
共⫺
,
, 0兲z 苷 t sin ty 苷 tx 苷 t cos t
(
s
3
, 1, 2
)
z 苷 4 cos 2ty 苷 2 sin tx 苷 2 cos t
共0, 1, 0兲z 苷 2t ⫺ t
2
y 苷 e
⫺t
x 苷 t
共0, 2, 1兲z 苷 t
2
y 苷 2
s
t
x 苷 ln t
共1, 0, 1兲z 苷 e
⫺t
y 苷 e
⫺t
sin tx 苷 e
⫺t
cos t
25.
共1, 0, 0兲z 苷 te
t
2
y 苷 te
t
x 苷 e
t
共3, 0, 2兲z 苷 t
3
⫹ ty 苷 t
3
⫺ tx 苷 1 ⫹ 2
s
t
r⬘共t兲 ⴢ r⬙共t兲.r⬙共0兲T共0兲r共t兲 苷 具e
2t
, e
⫺2t
, te
2t
典
r⬘共t兲 ⫻ r⬙共t兲.r⬘共t兲, T共1兲, r⬙共t兲, r共t兲 苷 具t, t
2
, t
3
典
t 苷
兾4r共t兲 苷 2 sin t i ⫹ 2 cos t j ⫹ tan t k
t 苷 0r共t兲 苷 cos t i ⫹ 3t j ⫹ 2 sin 2t k
19.
t 苷 1r共t兲 苷 4
s
t
i ⫹ t
2
j ⫹ t k
t 苷 0r共t兲 苷 具te
⫺t
, 2 arctan t, 2e
t
典
t
T共t兲
r共t兲 苷 t a ⫻ 共b ⫹ t c兲
r共t兲 苷 a ⫹ t b ⫹ t
2
c
15.
r共t兲 苷 at cos 3t i ⫹ b sin
3
t j ⫹ c cos
3
t k
r共t兲 苷 e
t
2
i ⫺ j ⫹ ln共1 ⫹ 3t兲
k
r共t兲 苷 sin
⫺1
t i ⫹
s
1 ⫺ t
2
j ⫹ k
r共t兲 苷 i ⫺ j ⫹ e
4t
k
r共t兲 苷 具tan t, sec t, 1兾t
2
典
SECTION 14.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS
||||
865