55-26 The Civil Engineering Handbook, Second Edition
A line element (small distance) in the real world (on the ellipsoid, h = 0) is
(55.104)
A line element (small distance) in the mapped world (on paper) is
(55.105)
Equation (55.104) leads to
(55.106)
or
(55.107)
Since we want to work with isometric coordinates in the real world (note that the mapping coordinates
{X, Y} are already isometric), we introduce the new variable dq. In other words, Eq. (55.107) becomes
(55.108)
So, we have
(55.109)
Upon integration of Eq. (55.109) we obtain the isometric latitude q:
(55.110)
The isometric latitude for a sphere (e = 0) becomes simply
(55.111)
TA B L E 55.2 Radius of Curvature in the Meridian M, Radius of Curvature
in the Prime Vertical N, and Metric Equivalence of 1 Arcsecond in Ellipsoidal
or Spherical Longitude l (m) and in Ellipsoidal or Spherical Latitude f/y
(m) as a Function of Geodetic Latitude f and Spherical Latitude y
f/y MN
Ellipsoid Sphere
1 in. l 1 in. f 1 in. l 1 in. y
00.0 6,335,439 6,378,137 30.922 30.715 30.887 30.887
10.0 6,337,358 6,378,781 30.455 30.724 30.418 30.887
20.0 6,342,888 6,380,636 29.069 30.751 29.025 30.887
30.0 6,351,377 6,383,481 26.802 30.792 26.749 30.887
40.0 6,361,816 6,386,976 23.721 30.843 23.661 30.887
50.0 6,372,956 6,390,702 19.915 30.897 19.854 30.887
60.0 6,383,454 6,394,209 15.500 30.948 15.444 30.887
70.0 6,392,033 6,397,072 10.607 30.989 10.564 30.887
80.0 6,397,643 6,398,943 05.387 31.017 05.364 30.887
90.0 6,399,594 6,399,594 00.000 31.026 00.000 30.887
Note: Ellipsoidal values for WGS84: a = 6,378,137 m, 1/f = 298.257 223 563.
Spherical values: R = 6,371,000 m.
ds d d
mm
22 2
=+lf
dS dX dY
222
=+
ds N d M d
222 2
=+cos fl f
rad
2
rad
2
ds N d
M
N
d
222
2
22
==
Ê
Ë
Á
ˆ
¯
˜
cos
cos
fl
f
f
rad
2
rad
2
ds N d dq
22222
=+
()
cos fl
dq
M
N
d=
cosf
f
rad
q
e
e
e
=+
Ê
Ë
Á
ˆ
¯
˜
-
+
Ê
Ë
Á
ˆ
¯
˜
È
Î
Í
Í
˘
˚
˙
˙
ln tan
sin
sin
/
pf
f
f42
1
1
2
q =+
Ê
Ë
Á
ˆ
¯
˜
ln tan
py
42